|
AGATA Collaboration(Ralet, D. et al), Gadea, A., & Perez-Vidal, R. M. (2017). Toward lifetime and g factor measurements of short-lived states in the vicinity of Pb-208. Phys. Scr., 92(5), 054004–4pp.
Abstract: The multi-nucleon transfer reaction mechanism was used to produce and study nuclei in the vicinity of 208Pb. This mass region is a test case for the nuclear shell model. The mass identification of the fragments was performed with the large acceptance magnetic spectrometer VAMOS++ coupled to the AGATA gamma-tracking array. This experiment aimed to determine both lifetimes and gyromagnetic ratios of excited states with the Cologne plunger device. The analysis indicates promising results with the possibility to determine several new lifetimes in this region.
|
|
|
AGATA Collaboration(Siciliano, M. et al), Gadea, A., Perez-Vidal, R. M., & Domingo-Pardo, C. (2020). Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in Sn-106,Sn-108. Phys. Lett. B, 806, 135474–7pp.
Abstract: The lifetimes of the low-lying excited states 2(+) and 4(+) have been directly measured in the neutron-deficient Sn-106,Sn-108 isotopes. The nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. The emitted gamma rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the B(E2; 2(1)(+) -> 0(g.s)(+)) values and it describes well the experimental pattern for Sn104-114 ; the B(E2;(+)(4) -> 2(1)(+)) values, measured here for the first time, depend critically on a delicate pairing-quadrupole balance, disclosed by the very precise results in Sn-108.
|
|
|
Montanari, D. et al, & Gadea, A. (2011). Probing the nature of particle-core couplings in Ca-49 with gamma spectroscopy and heavy-ion transfer reactions. Phys. Lett. B, 697(4), 288–293.
Abstract: Neutron rich nuclei around Ca-48 have been measured with the CLARA-PRISMA setup, making use of Ca-48 on Ni-64 binary reactions, at 5.9 MeV/A. Angular distributions of gamma rays give evidence, in several transfer channels, for a large spin alignment (approximate to 70%) perpendicular to the reaction plane, making it possible to firmly establish spin and parities of the excited states. In the case of Ca-49, states arising from different types of particle-core couplings are, for the first time, unambiguously identified on basis of angular distribution, polarization and lifetime measurements. Shell model and particle-vibration coupling calculations are used to pin down the nature of the states. Evidence is found for the presence, in the same excitation energy region, of two types of coupled states, i.e. single particle coupled to either Ca-48 or Ca-50 simple configurations, and particle-vibration coupled states based on the 3- phonon of Ca-48.
|
|