|
Bahl, H., Martin Lozano, V., & Weiglein, G. (2022). Simplified models for resonant neutral scalar production with missing transverse energy final states. J. High Energy Phys., 11(11), 042–37pp.
Abstract: Additional Higgs bosons appear in many extensions of the Standard Model (SM). While most existing searches for additional Higgs bosons concentrate on final states consisting of SM particles, final states containing beyond the SM (BSM) particles play an important role in many BSM models. In order to facilitate future searches for such final states, we develop a simplified model framework for heavy Higgs boson decays to a massive SM boson as well as one or more invisible particles. Allowing one kind of BSM mediator in each decay chain, we classify the possible decay topologies for each final state, taking into account all different possibilities for the spin of the mediator and the invisible particles. Our comparison of the kinematic distributions for each possible model realization reveals that the distributions corresponding to the different simplified model topologies are only mildly affected by the different spin hypotheses, while there is significant sensitivity for distinguishing between the different decay topologies. As a consequence, we point out that expressing the results of experimental searches in terms of the proposed simplified model topologies will allow one to constrain wide classes of different BSM models. The application of the proposed simplified model framework is explicitly demonstrated for the example of a mono-Higgs search. For each of the simplified models that are proposed in this paper we provide all necessary ingredients for performing Monte-Carlo simulations such that they can readily be applied in experimental analyses.
|
|
Botella, F. J., Branco, G. C., & Rebelo, M. N. (2010). Minimal flavour violation and multi-Higgs models. Phys. Lett. B, 687(2-3), 194–200.
Abstract: We propose an extension of the hypothesis of Minimal Flavour Violation (MFV) to general multi-Higgs models without the assumption of Natural Flavour Conservation (NFC) in the Higgs sector. We study in detail under what conditions the neutral Higgs couplings are only functions of V-CKM and propose a MFV expansion for the neutral Higgs couplings to fermions.
|
|
Carcamo Hernandez, A. E., Vishnudath, K. N., & Valle, J. W. F. (2023). Linear seesaw mechanism from dark sector. J. High Energy Phys., 09(9), 046–18pp.
Abstract: We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.
|
|
Fu, B. W., Ghoshal, A., King, S. F., & Hossain Rahat, M. (2024). Type-I two-Higgs-doublet model and gravitational waves from domain walls bounded by strings. J. High Energy Phys., 08(8), 237–25pp.
Abstract: The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings. The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1)R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1)R breaking scale from 1012 to 1015 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f3 slope and inflexion in the frequency range between microhertz and hertz.
|
|
Giarnetti, A., Herrero-Garcia, J., Marciano, S., Meloni, D., & Vatsyayan, D. (2024). Neutrino masses from new Weinberg-like operators: phenomenology of TeV scalar multiplets. J. High Energy Phys., 05(5), 055–37pp.
Abstract: The unique dimension-5 effective operator, LLHH, known as the Weinberg operator, generates tiny Majorana masses for neutrinos after electroweak spontaneous symmetry breaking. If there are new scalar multiplets that take vacuum expectation values (VEVs), they should not be far from the electroweak scale. Consequently, they may generate new dimension-5 Weinberg-like operators which in turn also contribute to Majorana neutrino masses. In this study, we consider scenarios with one or two new scalars up to quintuplet SU(2) representations. We analyse the scalar potentials, studying whether the new VEVs can be induced and therefore are naturally suppressed, as well as the potential existence of pseudo-Nambu-Goldstone bosons. Additionally, we also obtain general limits on the new scalar multiplets from direct searches at colliders, loop corrections to electroweak precision tests and the W-boson mass.
|