|
Garcia-Recio, C., Nieves, J., & Tolos, L. (2010). D mesic nuclei. Phys. Lett. B, 690(4), 369–375.
Abstract: The energies and widths of several D-0 meson bound states for different nuclei are obtained using a D-meson selfenergy in the nuclear medium, which is evaluated in a selfconsistent manner using techniques of unitarized coupled-channel theory. The kernel of the meson-baryon interaction is based on a model that treats heavy pseudoscalar and heavy vector mesons on equal footing, as required by heavy quark symmetry. We find D-0 bound states in all studied nuclei, from C-12 up to Pb-208. The inclusion of vector mesons is the keystone for obtaining an attractive D-nucleus interaction that leads to the existence of D-0-nucleus bound states, as compared to previous studies based on SU(4) flavor symmetry. In some cases, the half widths are smaller than the separation of the levels, what makes possible their experimental observation by means of a nuclear reaction. This can be of particular interest for the future PANDA@FAIR physics program. We also find a D+ bound state in C-12, but it is too broad and will have a significant overlap with the energies of the continuum.
|
|
Tolos, L., Cabrera, D., Garcia-Recio, C., Molina, R., Nieves, J., Oset, E., et al. (2013). Strangeness and charm in nuclear matter. Nucl. Phys. A, 914, 461–471.
Abstract: The properties of strange (K, (K) over bar and (K) over bar*) and open-charm (D, (D) over bar and D*) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the K, (K) over bar and (K) over bar* spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the gamma A -> K+ K*(-) A' reaction, which we propose as a tool to detect in-medium modifications of the (K) over bar* meson. On the other hand, in the charm sector, several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2(+) and 3/2(+) baryons. The properties of these states in matter are analyzed and their influence on the open-charm meson spectral functions is studied. We finally discuss the possible formation of D-mesic nuclei at FAIR energies.
|
|
Yamagata-Sekihara, J., Garcia-Recio, C., Nieves, J., Salcedo, L. L., & Tolos, L. (2016). Formation spectra of charmed meson-nucleus systems using an antiproton beam. Phys. Lett. B, 754, 26–32.
Abstract: We investigate the structure and formation of charmed meson--nucleus systems, with the aim of understanding the charmed meson-nucleon interactions and the properties of the charmed mesons in the nuclear medium. The (D) over bar mesic nuclei are of special interest, since they have tiny decay widths due to the absence of strong decays for the (D) over barN pair. Employing an effective model for the (D) over barN and DN interactions and solving the Klein-Gordon equation for (D) over bar and D in finite nuclei, we find that the D0-11B system has 1s and 2p mesic nuclear states and that the D0-11B system binds in a 1s state. In view of the forthcoming experiments by the PANDA and CBM Collaborations at the future FAIR facility and the J-PARC upgrade, we calculate the formation spectra of the [(D) over bar B--11] and [D-0-B-11] mesic nuclei for an antiproton beam on a C-12 target. Our results suggest that it is possible to observe the 2p D- mesic nuclear state with an appropriate experimental setup.
|