|
Amaldi, U., Bonomi, R., Braccini, S., Crescenti, M., Degiovanni, A., Garlasche, M., et al. (2010). Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs. Nucl. Instrum. Methods Phys. Res. A, 620(2-3), 563–577.
Abstract: Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.
|
|
|
Degiovanni, A., Amaldi, U., Bonomi, R., Garlasche, M., Garonna, A., Verdu-Andres, S., et al. (2011). TERA high gradient test program of RF cavities for medical linear accelerators. Nucl. Instrum. Methods Phys. Res. A, 657(1), 55–58.
Abstract: The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.
|
|