|
Lloret, E., Fernandez, A., Trbojevich, R., Arnau, J., & Picouet, P. A. (2016). Relevance of nanocomposite packaging on the stability of vacuum-packed dry cured ham. Meat Sci., 118, 8–14.
Abstract: In this study effects of a novel high barrier multilayer polyamide film containing dispersed nanoclays (PAN) on the stability of vacuum packed dry-cured ham were investigated during 90 days refrigerated storage in comparison with non-modified multilayer polyamide (PA) and a commercial high barrier film. Characteristic bands of the mineral in FT-IR spectra confirmed the presence of nanoclays in PAN, enhancing oxygen transmission barrier properties and UV protection. Packaging in PAN films did not originate significant changes on colour or lipid oxidation during prolonged storage of vacuum-packed dry-cured ham. Larger oxygen transmission rates in PA films caused changes in CIE b* during refrigerated storage. Ham quality was not affected by light exposition during 90 days and only curing had a significant benefit on colour and TBARS, being cured samples more stable during storage in all the packages used. Packaging of dry-cured ham in PAN was equivalent to commercial high barrier films.
|
|
|
Lloret, E., Picouet, P. A., Trbojevich, R., & Fernandez, A. (2016). Colour stability of cooked ham packed under modified atmospheres in polyamide nanocomposite blends. LWT-Food Sci. Technol., 66, 582–589.
Abstract: Two novel blends containing a low-density polyethylene (LDPE) and a neat polyamide (PA) or a polyamide nanocomposite (PAN) layers were fabricated and their technological potential was evaluated during the refrigeration of cooked ham in modified atmospheres (MAP). Nanoclays were homogeneously distributed and nearly exfoliated, and they lowered significantly the oxygen transmission rate (OTR) of the PAN films. Due to the lower OTR, the headspace oxygen level in PAN pouches do not rise above 0.26% but it approached 2% in PA pouches at day 20. The residual oxygen levels were key for colour change during MAP storage of cooked ham. Cooked ham redness and reflectivity were stable during 27 days in PAN pouches while a strong colour deterioration took place after day 7 in PA pouches. Other parameters such as moisture content and water activity remained unaltered, and pH development was related to microbial growth and independent of the packaging polymer. The evolution of cooked ham colour in PAN was comparable to a high-barrier commercial polymer, and was acceptable for commercial sale for 27 days, showing excellent perspectives for polyamide nanocomposites in the storage of cooked ham.
|
|
|
Trbojevich, R. A., Fernandez, A., Watanabe, F., Mustafa, T., & Bryant, M. S. (2016). Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells. J. Nanopart. Res., 18(3), 55–12pp.
Abstract: Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 lm pore diameter 125 μm thick synthetic cellulose membranes, and 16 and 120 μm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.
|
|