|
Amerio, A., Cuoco, A., & Fornengo, N. (2023). Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning. J. Cosmol. Astropart. Phys., 09(9), 029–39pp.
Abstract: We reconstruct the extra-galactic gamma-ray source-count distribution, or dN/dS, of resolved and unresolved sources by adopting machine learning techniques. Specifically, we train a convolutional neural network on synthetic 2-dimensional sky-maps, which are built by varying parameters of underlying source-counts models and incorporate the FermiLAT instrumental response functions. The trained neural network is then applied to the Fermi-LAT data, from which we estimate the source count distribution down to flux levels a factor of 50 below the Fermi-LAT threshold. We perform our analysis using 14 years of data collected in the (1, 10) GeV energy range. The results we obtain show a source count distribution which, in the resolved regime, is in excellent agreement with the one derived from cataloged sources, and then extends as dN/dS " S-2 in the unresolved regime, down to fluxes of 5 center dot 10-12 cm-2 s-1. The neural network architecture and the devised methodology have the flexibility to enable future analyses to study the energy dependence of the source-count distribution.
|
|
|
Balibrea-Correa, J., Lerendegui-Marco, J., Babiano-Suarez, V., Caballero, L., Calvo, D., Ladarescu, I., et al. (2021). Machine Learning aided 3D-position reconstruction in large LaCl3 crystals. Nucl. Instrum. Methods Phys. Res. A, 1001, 165249–17pp.
Abstract: We investigate five different models to reconstruct the 3D gamma-ray hit coordinates in five large LaCl3(Ce) monolithic crystals optically coupled to pixelated silicon photomultipliers. These scintillators have a base surface of 50 x 50 mm(2) and five different thicknesses, from 10 mm to 30 mm. Four of these models are analytical prescriptions and one is based on a Convolutional Neural Network. Average resolutions close to 1-2 mm fwhm are obtained in the transverse crystal plane for crystal thicknesses between 10 mm and 20 mm using analytical models. For thicker crystals average resolutions of about 3-5 mm fwhm are obtained. Depth of interaction resolutions between 1 mm and 4 mm are achieved depending on the distance of the interaction point to the photosensor surface. We propose a Machine Learning algorithm to correct for linearity distortions and pin-cushion effects. The latter allows one to keep a large field of view of about 70%-80% of the crystal surface, regardless of crystal thickness. This work is aimed at optimizing the performance of the so-called Total Energy Detector with Compton imaging capability (i-TED) for time-of-flight neutron capture cross-section measurements.
|
|
|
Blanes-Selva, V., Ruiz-Garcia, V., Tortajada, S., Benedi, J. M., Valdivieso, B., & Garcia-Gomez, J. M. (2021). Design of 1-year mortality forecast at hospital admission: A machine learning approach. Health Inform. J., 27(1), 13pp.
Abstract: Palliative care is referred to a set of programs for patients that suffer life-limiting illnesses. These programs aim to maximize the quality of life (QoL) for the last stage of life. They are currently based on clinical evaluation of the risk of 1-year mortality. The main aim of this work is to develop and validate machine-learning-based models to predict the exitus of a patient within the next year using data gathered at hospital admission. Five machine-learning techniques were applied using a retrospective dataset. The evaluation was performed with five metrics computed by a resampling strategy: Accuracy, the area under the ROC curve, Specificity, Sensitivity, and the Balanced Error Rate. All models reported an AUC ROC from 0.857 to 0.91. Specifically, Gradient Boosting Classifier was the best model, producing an AUC ROC of 0.91, a sensitivity of 0.858, a specificity of 0.808, and a BER of 0.1687. Information from standard procedures at hospital admission combined with machine learning techniques produced models with competitive discriminative power. Our models reach the best results reported in the state of the art. These results demonstrate that they can be used as an accurate data-driven palliative care criteria inclusion.
|
|
|
Bonilla, J. et al, & Vos, M. (2022). Jets and Jet Substructure at Future Colliders. Front. Physics, 10, 897719–17pp.
Abstract: Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program.
|
|
|
Caron, S., Eckner, C., Hendriks, L., Johannesson, G., Ruiz de Austri, R., & Zaharijas, G. (2023). Mind the gap: the discrepancy between simulation and reality drives interpretations of the Galactic Center Excess. J. Cosmol. Astropart. Phys., 06(6), 013–56pp.
Abstract: The Galactic Center Excess (GCE) in GeV gamma rays has been debated for over a decade, with the possibility that it might be due to dark matter annihilation or undetected point sources such as millisecond pulsars (MSPs). This study investigates how the gamma-ray emission model (-yEM) used in Galactic center analyses affects the interpretation of the GCE's nature. To address this issue, we construct an ultra-fast and powerful inference pipeline based on convolutional Deep Ensemble Networks. We explore the two main competing hypotheses for the GCE using a set of-yEMs with increasing parametric freedom. We calculate the fractional contribution (fsrc) of a dim population of MSPs to the total luminosity of the GCE and analyze its dependence on the complexity of the ryEM. For the simplest ryEM, we obtain fsrc = 0.10 f 0.07, while the most complex model yields fsrc = 0.79 f 0.24. In conclusion, we find that the statement about the nature of the GCE (dark matter or not) strongly depends on the assumed ryEM. The quoted results for fsrc do not account for the additional uncertainty arising from the fact that the observed gamma-ray sky is out-of-distribution concerning the investigated ryEM iterations. We quantify the reality gap between our ryEMs using deep-learning-based One-Class Deep Support Vector Data Description networks, revealing that all employed ryEMs have gaps to reality. Our study casts doubt on the validity of previous conclusions regarding the GCE and dark matter, and underscores the urgent need to account for the reality gap and consider previously overlooked “out of domain” uncertainties in future interpretations.
|
|
|
Dimitriou, A., Figueroa, D. G., & Zaldivar, B. (2024). Fast likelihood-free reconstruction of gravitational wave backgrounds. J. Cosmol. Astropart. Phys., 09(9), 032–51pp.
Abstract: based) techniques for reconstructing the spectral shape of a gravitational wave background (GWB). We focus on the reconstruction of an arbitrarily shaped signal (approximated by a piecewise power-law in many frequency bins) by the LISA detector, but the method can be easily extended to either template-dependent signals, or to other detectors, as long as a characterisation of the instrumental noise is available. As proof of the technique, we quantify the ability of LISA to reconstruct signals of arbitrary spectral shape (blind reconstruction), considering a diversity of frequency profiles, and including astrophysical backgrounds in some cases. As a teaser of how the method can reconstruct signals characterised by a parameter-dependent template (template reconstruction), we present a dedicated study for power-law signals. While our technique has several advantages with respect to traditional MCMC methods, we validate it with the latter for concrete cases. This work opens the door for both fast and accurate Bayesian parameter estimation of GWBs, with essentially no computational overhead during the inference step. Our set of tools are integrated into the package GWBackFinder, which is publicly available in GitHub.
|
|
|
Ferrer-Sanchez, A., Martin-Guerrero, J., Ruiz de Austri, R., Torres-Forne, A., & Font, J. A. (2024). Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics. Comput. Meth. Appl. Mech. Eng., 424, 116906–18pp.
Abstract: We present a novel methodology based on Physics-Informed Neural Networks (PINNs) for solving systems of partial differential equations admitting discontinuous solutions. Our method, called Gradient-Annihilated PINNs (GA-PINNs), introduces a modified loss function that forces the model to partially ignore high-gradients in the physical variables, achieved by introducing a suitable weighting function. The method relies on a set of hyperparameters that control how gradients are treated in the physical loss. The performance of our methodology is demonstrated by solving Riemann problems in special relativistic hydrodynamics, extending earlier studies with PINNs in the context of the classical Euler equations. The solutions obtained with the GA-PINN model correctly describe the propagation speeds of discontinuities and sharply capture the associated jumps. We use the relative l(2) error to compare our results with the exact solution of special relativistic Riemann problems, used as the reference ''ground truth'', and with the corresponding error obtained with a second-order, central, shock-capturing scheme. In all problems investigated, the accuracy reached by the GA-PINN model is comparable to that obtained with a shock-capturing scheme, achieving a performance superior to that of the baseline PINN algorithm in general. An additional benefit worth stressing is that our PINN-based approach sidesteps the costly recovery of the primitive variables from the state vector of conserved variables, a well-known drawback of grid-based solutions of the relativistic hydrodynamics equations. Due to its inherent generality and its ability to handle steep gradients, the GA-PINN methodology discussed in this paper could be a valuable tool to model relativistic flows in astrophysics and particle physics, characterized by the prevalence of discontinuous solutions.
|
|
|
Folgado, M. G., & Sanz, V. (2022). Exploring the political pulse of a country using data science tools. J. Comput. Soc. Sci., 5, 987–1000.
Abstract: In this paper we illustrate the use of Data Science techniques to analyse complex human communication. In particular, we consider tweets from leaders of political parties as a dynamical proxy to political programmes and ideas. We also study the temporal evolution of their contents as a reaction to specific events. We analyse levels of positive and negative sentiment in the tweets using new tools adapted to social media. We also train a Fully-Connected Neural Network (FCNN) to recognise the political affiliation of a tweet. The FCNN is able to predict the origin of the tweet with a precision in the range of 71-75%, and the political leaning (left or right) with a precision of around 90%. This study is meant to be viewed as an example of how to use Twitter data and different types of Data Science tools for a political analysis.
|
|
|
HAWC Collaboration(Alfaro, R. et al), & Salesa Greus, F. (2022). Gamma/hadron separation with the HAWC observatory. Nucl. Instrum. Methods Phys. Res. A, 1039, 166984–13pp.
Abstract: The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observes atmospheric showers produced by incident gamma rays and cosmic rays with energy from 300 GeV to more than 100 TeV. A crucial phase in analyzing gamma-ray sources using ground-based gamma-ray detectors like HAWC is to identify the showers produced by gamma rays or hadrons. The HAWC observatory records roughly 25,000 events per second, with hadrons representing the vast majority (> 99.9%) of these events. The standard gamma/hadron separation technique in HAWC uses a simple rectangular cut involving only two parameters. This work describes the implementation of more sophisticated gamma/hadron separation techniques, via machine learning methods (boosted decision trees and neural networks), and summarizes the resulting improvements in gamma/hadron separation obtained in HAWC.
|
|
|
Kasieczka, G. et al, & Sanz, V. (2021). The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics. Rep. Prog. Phys., 84(12), 124201–64pp.
Abstract: A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.
|
|