|
Agaras, M. N. et al, & Fiorini, L. (2023). Laser calibration of the ATLAS Tile Calorimeter during LHC Run 2. J. Instrum., 18(6), P06023–35pp.
Abstract: This article reports the laser calibration of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2 data campaign. The upgraded Laser II calibration system is described. The system was commissioned during the first LHC Long Shutdown, exhibiting a stability better than 0.8% for the laser light monitoring. The methods employed to derive the detector calibration factors with data from the laser calibration runs are also detailed. These allowed to correct for the response fluctuations of the 9852 photomultiplier tubes of the Tile Calorimeter with a total uncertainty of 0.5% plus a luminosity-dependent sub-dominant term. Finally, we report the regular monitoring and performance studies using laser events in both standalone runs and during proton collisions. These studies include channel timing and quality inspection, and photomultiplier linearity and response dependence on anode current.
|
|
|
ATLAS Tile Calorimeter Community(Abdallah, J. et al), Castillo Gimenez, V., Costelo, J., Ferrer, A., Fullana, E., Gonzalez, V., et al. (2013). The optical instrumentation of the ATLAS Tile Calorimeter. J. Instrum., 8, P01005–21pp.
Abstract: The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of +/-1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.
|
|
|
Double Chooz collaboration(Abrahao, T. et al), & Novella, P. (2018). Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz. J. Instrum., 13, P01031–26pp.
Abstract: Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level.
|
|
|
DUNE Collaboration(Abud, A. A. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2022). Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. J. Instrum., 17(1), P01005–111pp.
Abstract: The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
Keywords: Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)
|
|
|
Garcia, A. R., Martinez, T., Cano-Ott, D., Castilla, J., Guerrero, C., Marin, J., et al. (2012). MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements. J. Instrum., 7, C05012–12pp.
Abstract: The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.
|
|
|
Gomez-Cadenas, J. J., Benlloch-Rodriguez, J. M., Ferrario, P., Monrabal, F., Rodriguez, J., & Toledo, J. F. (2016). Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study. J. Instrum., 11, P09011–18pp.
Abstract: The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.
|
|
|
Jaworski, G., Palacz, M., Nyberg, J., de Angelis, G., de France, G., Di Nitto, A., et al. (2012). Monte Carlo simulation of a single detector unit for the neutron detector array NEDA. Nucl. Instrum. Methods Phys. Res. A, 673, 64–72.
Abstract: A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501.
|
|
|
Luo, X. L. et al, Agramunt, J., Egea, F. J., Gadea, A., & Huyuk, T. (2014). Test of digital neutron-gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA). Nucl. Instrum. Methods Phys. Res. A, 767, 83–91.
Abstract: A comparative study of the neutron-gamma discrimination performance of a liquid scintillator detector BC501A coupled to four different 5 in photomultiplier tubes (ET9390kb, R11833-100, XP4512 and R4144) was carried out Both the Charge Comparison method and the Integrated Rise-Time method were implemented digitally to discriminate between neutrons and gamma rays emitted by a Cf-252 source. In both methods, the neutron-gamma discrimination capabilities of the four photomultiplier tubes were quantitatively compared by evaluating their figure-of-merit values at different energy regions between 50 keVee and 1000 keVee. Additionally, the results were further verified qualitatively using time-of-flight to distinguish gamma rays and neutrons. The results consistently show that photomultiplier tubes R11833-100 and ET9390kb generally perform best regarding neutron-gamma discrimination with only slight differences in figure-of-merit values. This superiority can be explained by their relatively higher photoelectron yield, which indicates that a scintillator detector coupled to a photomultiplier tube with higher photoelectron yield tends to result in better neutron-gamma discrimination performance. The results of this work will provide reference for the choice of photomultiplier tubes for future neutron detector arrays like NEDA.
|
|
|
Luo, X. L. et al, Agramunt, J., Egea, F. J., Gadea, A., & Huyuk, T. (2018). Pulse pile-up identification and reconstruction for liquid scintillator based neutron detectors. Nucl. Instrum. Methods Phys. Res. A, 897, 59–65.
Abstract: The issue of pulse pile-up is frequently encountered in nuclear experiments involving high counting rates, which will distort the pulse shapes and the energy spectra. A digital method of off-line processing of pile-up pulses is presented. The pile-up pulses were firstly identified by detecting the downward-going zero-crossings in the first-order derivative of the original signal, and then the constituent pulses were reconstructed based on comparing the pile-up pulse with four models that are generated by combining pairs of neutron and.. standard pulses together with a controllable time interval. The accuracy of this method in resolving the pile-up events was investigated as a function of the time interval between two pulses constituting a pile-up event. The obtained results show that the method is capable of disentangling two pulses with a time interval among them down to 20 ns, as well as classifying them as neutrons or gamma rays. Furthermore, the error of reconstructing pile-up pulses could be kept below 6% when successive peaks were separated by more than 50 ns. By applying the method in a high counting rate of pile-up events measurement of the NEutron Detector Array (NEDA), it was empirically found that this method can reconstruct the pile-up pulses and perform neutron-gamma discrimination quite accurately. It can also significantly correct the distorted pulse height spectrum due to pile-up events.
|
|
|
Modamio, V., Valiente-Dobon, J. J., Jaworski, G., Huyuk, T., Triossi, A., Egea, J., et al. (2015). Digital pulse-timing technique for the neutron detector array NEDA. Nucl. Instrum. Methods Phys. Res. A, 775, 71–76.
Abstract: A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in by 5 in BC501A liquict scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CM algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.
|
|