|
Aplin, S., Boronat, M., Dannheim, D., Duarte, J., Gaede, F., Ruiz-Jimeno, A., et al. (2013). Forward tracking at the next e(+)e(-) collider part II: experimental challenges and detector design. J. Instrum., 8, T06001–26pp.
Abstract: We present the second in a series of studies into the forward tracking system for a future linear e(+)e(-) collider with a center-of-mass energy in the range from 250 GeV to 3 TeV. In this note a number of specific challenges are investigated, which have caused a degradation of the tracking and vertexing performance in the forward region in previous experiments. We perform a quantitative analysis of the dependence of the tracking performance on detector design parameters and identify several ways to mitigate the performance loss for charged particles emitted at shallow angle.
|
|
|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fernandez Martinez, P., et al. (2016). Performance of b-jet identification in the ATLAS experiment. J. Instrum., 11, P04008–126pp.
Abstract: The identification of jets containing b hadrons is important for the physics programme of the ATLAS experiment at the Large Hadron Collider. Several algorithms to identify jets containing b hadrons are described, ranging from those based on the reconstruction of an inclusive secondary vertex or the presence of tracks with large impact parameters to combined tagging algorithms making use of multi-variate discriminants. An independent b-tagging algorithm based on the reconstruction of muons inside jets as well as the b-tagging algorithm used in the online trigger are also presented. The b-jet tagging efficiency, the c-jet tagging efficiency and the mistag rate for light flavour jets in data have been measured with a number of complementary methods. The calibration results are presented as scale factors defined as the ratio of the efficiency (or mistag rate) in data to that in simulation. In the case of b jets, where more than one calibration method exists, the results from the various analyses have been combined taking into account the statistical correlation as well as the correlation of the sources of systematic uncertainty.
|
|
|
ATLAS Collaboration(Aad, G. et al), Amoros, G., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Ferrer, A., et al. (2012). A study of the material in the ATLAS inner detector using secondary hadronic interactions. J. Instrum., 7, P01013–40pp.
Abstract: The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from similar to 200 μm to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum.
|
|
|
ATLAS Collaboration(Aad, G. et al), Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cantero, J., et al. (2024). The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3. J. Instrum., 19(5), P05063–227pp.
Abstract: The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of L = 2 x 10(34) cm(-2) s(-1) was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of L = 2x10(34) cm(-2) s(-1) , with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.
|
|
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., Castillo, F. L., et al. (2020). ATLAS data quality operations and performance for 2015-2018 data-taking. J. Instrum., 15(4), P04003–43pp.
Abstract: The ATLAS detector at the Large Hadron Collider reads out particle collision data from over 100 million electronic channels at a rate of approximately 100 kHz, with a recording rate for physics events of approximately 1 kHz. Before being certified for physics analysis at computer centres worldwide, the data must be scrutinised to ensure they are clean from any hardware or software related issues that may compromise their integrity. Prompt identification of these issues permits fast action to investigate, correct and potentially prevent future such problems that could render the data unusable. This is achieved through the monitoring of detector-level quantities and reconstructed collision event characteristics at key stages of the data processing chain. This paper presents the monitoring and assessment procedures in place at ATLAS during 2015-2018 data-taking. Through the continuous improvement of operational procedures, ATLAS achieved a high data quality efficiency, with 95.6% of the recorded proton-proton collision data collected at root s = 13 TeV certified for physics analysis.
|
|