|
AGATA Collaboration(Clement, E. et al), Domingo-Pardo, C., Gadea, A., Perez-Vidal, R. M., & Civera, J. V. (2017). Conceptual design of the AGATA 1 pi array at GANIL. Nucl. Instrum. Methods Phys. Res. A, 855, 1–12.
Abstract: The Advanced GAmma Tracking Array (AGATA) has been installed at the GANIL facility, Caen-France. This setup exploits the stable and radioactive heavy-ions beams delivered by the cyclotron accelerator complex of GANIL. Additionally, it benefits from a large palette of ancillary detectors and spectrometers to address in-beam gamma-ray spectroscopy of exotic nuclei. The set-up has been designed to couple AGATA with a magnetic spectrometer, charged-particle and neutron detectors, scintillators for the detection of high-energy gamma rays and other devices such as a plunger to measure nuclear lifetimes. In this paper, the design and the mechanical characteristics of the set-up are described. Based on simulations, expected performances of the AGATA l pi array are presented.
|
|
|
Barrientos, L., Borja-Lloret, M., Etxebeste, A., Muñoz, E., Oliver, J. F., Ros, A., et al. (2021). Performance evaluation of MACACO II Compton camera. Nucl. Instrum. Methods Phys. Res. A, 1014, 165702–7pp.
Abstract: The IRIS group at IFIC-Valencia has developed a second version of a Compton camera prototype for hadron therapy treatment monitoring, with the aim of improving the performance with respect to its predecessor. The system is composed of three Lanthanum (III) bromide (LaBr3) crystals coupled to silicon photomultipliers (SiPMs). The detector energy resolution has been improved to 5.6% FWHM at 511 keV and an angular resolution of 8.0 degrees has been obtained. Images of a Na-22 point-like source have been reconstructed selecting two and three interaction events. Moreover, the experimental data have been reproduced with Monte Carlo simulations using a Compton camera module (CCMod) in GATE v8.2 obtaining a good correlation.
|
|
|
Briz, J. A., Nerio, A. N., Ballesteros, C., Borge, M. J. G., Martinez, P., Perea, A., et al. (2022). Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators. IEEE Trans. Nucl. Sci., 69(4), 696–702.
Abstract: Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and gamma-ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.
|
|
|
Llosa, G., Barrio, J., Cabello, J., Crespo, A., Lacasta, C., Rafecas, M., et al. (2012). Detector characterization and first coincidence tests of a Compton telescope based on LaBr3 crystals and SiPMs. Nucl. Instrum. Methods Phys. Res. A, 695, 105–108.
Abstract: A Compton telescope for dose monitoring in hadron therapy consisting of several layers of continuous LaBr3 crystals coupled to silicon photomultiplier (SiPM) arrays is under development within the ENVISION project. In order to test the possibility of employing such detectors for the telescope, a detector head consisting of a continuous 16 mm x 18 mm x 5 mm LaBr3 crystal coupled to a SiPM array has been assembled and characterized, employing the SPIROC1 ASIC as readout electronics. The best energy resolution obtained at 511 key is 6.5% FWHM and the timing resolution is 3.1 ns FWHM. A position determination method for continuous crystals is being tested, with promising results. In addition, the detector has been operated in time coincidence with a second detector layer, to determine the coincidence capabilities of the system. The first tests are satisfactory, and encourage the development of larger detectors that will compose the telescope prototype.
|
|
|
Llosa, G., Barrio, J., Lacasta, C., Callier, S., Raux, L., & de La Taille, C. (2011). First tests in the application of silicon photomultiplier arrays to dose monitoring in hadron therapy. Nucl. Instrum. Methods Phys. Res. A, 648, S96–S99.
Abstract: A detector head composed of a continuous LaBr3 crystal coupled to a silicon photomultiplier array has been mounted and tested, for its use in a Compton telescope for dose monitoring in hadron therapy. The LaBr3 crystal has 16 mm x 18 mm x 5 mm size, and it is surrounded with reflecting material in five faces. The SiPM array has 16 (4 x 4) elements of 3 mm x 3 mm size. The SPIROC1 ASIC has been employed as readout electronics. The detector shows a linear behavior up to 1275 keV. The energy resolution obtained at 511 keV is 7% FWHM, and it varies as one over the square root of the energy up to the energies tested. The variations among the detector channels are within 12%. A preliminary measurement of the timing resolution gives 7 ns FWHM. The spatial resolution obtained with the center of gravity method is 1.2 mm FWHM. The tests performed confirm the correct functioning of the detector.
|
|
|
Llosa, G., Trovato, M., Barrio, J., Etxebeste, A., Muñoz, E., Lacasta, C., et al. (2016). First Images of a Three-layer compton Telescope prototype for Treatment Monitoring in hadron Therapy. Front. Oncol., 6, 14–6pp.
Abstract: A Compton telescope for dose monitoring in hadron therapy is under development at IFIC. The system consists of three layers of LaBr3 crystals coupled to silicon photomulti-plier arrays. Na-22 sources have been successfully imaged reconstructing the data with an ML-EM code. Calibration and temperature stabilization are necessary for the prototype operation at low coincidence rates. A spatial resolution of 7.8 mm FWHM has been obtained in the first imaging tests.
|
|
|
Muñoz, E., Barrio, J., Etxebeste, A., Ortega, P. G., Lacasta, C., Oliver, J. F., et al. (2017). Performance evaluation of MACACO: a multilayer Compton camera. Phys. Med. Biol., 62(18), 7321–7341.
Abstract: Compton imaging devices have been proposed and studied for a wide range of applications. We have developed a Compton camera prototype which can be operated with two or three detector layers based on monolithic lanthanum bromide (LaBr3) crystals coupled to silicon photomultipliers (SiPMs), to be used for proton range verification in hadron therapy. In this work, we present the results obtained with our prototype in laboratory tests with radioactive sources and in simulation studies. Images of a Na-22 and an Y-88 radioactive sources have been successfully reconstructed. The full width half maximum of the reconstructed images is below 4 mm for a Na-22 source at a distance of 5 cm.
|
|
|
Ros Garcia, A., Barrio, J., Etxebeste, A., Garcia-Lopez, J., Jimenez-Ramos, M. C., Lacasta, C., et al. (2020). MACACO II test-beam with high energy photons. Phys. Med. Biol., 65(24), 245027–12pp.
Abstract: The IRIS group at IFIC Valencia is developing a three-layer Compton camera for treatment monitoring in proton therapy. The system is composed of three detector planes, each made of a LaBr3<i monolithic crystal coupled to a SiPM array. Having obtained successful results with the first prototype (MACACO) that demonstrated the feasibility of the proposed technology, a second prototype (MACACO II) with improved performance has been developed, and is the subject of this work. The new system has an enhanced detector energy resolution which translates into a higher spatial resolution of the telescope. The image reconstruction method has also been improved with an accurate model of the sensitivity matrix. The device has been tested with high energy photons at the National Accelerator Centre (CNA, Seville). The tests involved a proton beam of 18 MeV impinging on a graphite target, to produce 4.4 MeV photons. Data were taken at different system positions of the telescope with the first detector at 65 and 160 mm from the target, and at different beam intensities. The measurements allowed successful reconstruction of the photon emission distribution at two target positions separated by 5 mm in different telescope configurations. This result was obtained both with data recorded in the first and second telescope planes (two interaction events) and, for the first time in beam experiments, with data recorded in the three planes (three interaction events).
|
|
|
Viegas, R., Roser, J., Barrientos, L., Borja-Lloret, M., Casaña, J. V., Lopez, J. G., et al. (2023). Characterization of a Compton camera based on the TOFPET2 ASIC. Radiat. Phys. Chem., 202, 110507–11pp.
Abstract: The use of Compton cameras for medical imaging and its interest as a hadron therapy treatment monitoring has increased in the last decade with the development of silicon photomultipliers. MACACOp is a Compton camera prototype designed and assembled at the IRIS group of IFIC-Valencia. This Compton camera is based on monolithic Lanthanum (III) Bromide crystals and silicon photomultipliers, and employs the novel TOFPET2 ASIC as readout electronics. This system emerged as an alternative to MACACO II prototype, with the aim of improving its limited time resolution. To test the performance of the ASIC in a Compton camera setup, the prototype was characterized, both in laboratory and in-beam. A time resolution of 1.5 ns was obtained after time corrections, which improves greatly the performance of the MACACO II. Moreover, the results obtained at high photon energies demonstrate the ability of the system to obtain 1 mm displacements of the reconstructed spots. The results reinforce the potential of the system as a monitoring device for hadron therapy.
|
|