|
AGATA Collaboration(Lalovic, N. et al), Gadea, A., & Domingo-Pardo, C. (2018). Study of isomeric states in Pb-198, Pb-200, Pb-202, Pb-206 and Hg-206 populated in fragmentation reactions. J. Phys. G, 45(3), 035105–27pp.
Abstract: Isomeric states in isotopes in the vicinity of doubly-magic Pb-208 were populated following reactions of a relativistic Pb-208 primary beam impinging on a Be-9 fragmentation target. Secondary beams of Pb-198,Pb-200,Pb-202,Pb-206 and Hg-206 were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed gamma rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei Pb-206/Hg-206 was found to differ from the population of multi neutron-hole isomeric states in Pb-198,Pb-200,Pb-202.
|
|
|
Jungclaus, A. et al, Gadea, A., & Montaner-Piza, A. (2017). Observation of a gamma-decaying millisecond isomeric state in Cd-128(80). Phys. Lett. B, 772, 483–488.
Abstract: A new high-spin isomer in the neutron-rich nucleus Cd-128 was populated in the projectile fission of a U-238 beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T-1/2 = 6.3(8) mswas measured for the new state which was tentatively assigned a spin/parity of (15(-)). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus Cd-129. In the present experiment no evidence was found for the decay of a 18(+) E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in the 0h(11/2) and the 0g(9/2) orbit, respectively, which is predicted to exist by the shell model. (C) 2017 The Author(s). Published by Elsevier B.V.
|
|
|
Sahin, E. et al, & Algora, A. (2024). Collectivity at the prolate-oblate transition: The 21+ lifetime of 190W. Phys. Lett. B, 857, 138976–8pp.
Abstract: The neutron-rich rare isotope W-190 is discussed as a candidate for a prolate-oblate transitional nucleus with maximum gamma-softness. The collectivity of this isotope is assessed for the first time by the measurement of the reduced E2 transition probability of its first 2(+) state to the ground state. The experiment employed the FAst TIming Array (FATIMA), comprised of 36 LaBr3(Ce) scintillators, which was part of the DESPEC setup at GSI, Darmstadt. The 4(1)(+) and 2(1)(+) states of W-190 were populated subsequently to the decay of its 127(12) μs isomeric J(pi )= 10(-) state. The mean lifetime of the 2(1)(+) state was determined to be tau = 274(28) ps, which corresponds to a B(E2; 2(1)(+ )-> 0(1)(+)) value of 95(10) W.u. The results motivated a revision of previous calculations within an energy-density functional-based interacting boson model-2 approach, yielding E2 transition properties and spectroscopic quadrupole moments for tungsten isotopes. From comparison to theory, the new data suggest that W-190 is at the transition from prolate to oblate structure along the W isotopic chain, which had previously been discussed as a nuclear shape-phase transition.
|
|
|
Taprogge, J. et al, Gadea, A., & Montaner-Piza, A. (2014). Identification of a millisecond isomeric state in Cd-129(81) via the detection of internal conversion and Compton electrons. Phys. Lett. B, 738, 223–227.
Abstract: The decay of an isomeric state in the neutron-rich nucleus Cd-129 has been observed via the detection of internal conversion and Compton electrons providing first experimental information on excited states in this nucleus. The isomer was populated in the projectile fission of a U-238 beam at the Radioactive Isotope Beam Factory at RIKEN. From the measured yields of gamma-rays and internal conversion electrons, a multipolarity of E3 was tentatively assigned to the isomeric transition. A half-life of T-1/2 = 3.6(2) ms was determined for the new state which was assigned a spin of (21/2(+)), based on a comparison to shell model calculations performed using state-of-the-art realistic effective interactions.
|
|
|
Watanabe, H. et al, & Montaner-Piza, A. (2021). Impact of shell evolution on Gamow-Teller beta decay from a high-spin long-lived isomer in Ag-127. Phys. Lett. B, 823, 136766–6pp.
Abstract: The change of the shell structure in atomic nuclei, so-called “nuclear shell evolution”, occurs due to changes of major configurations through particle-hole excitations inside one nucleus, as well as due to variation of the number of constituent protons or neutrons. We have investigated how the shell evolution affects Gamow-Teller (GT) transitions that dominate the beta decay in the region below Sn-132 using the newly obtained experimental data on a long-lived isomer in Ag-127. The T-1/2 = 67.5(9) ms isomer has been identified with a spin and parity of (27/2(+)) at an excitation energy of 1942(-20)(+14) keV, and found to decay via an internal transition of an E3 character, which competes with the dominant beta-decay branches towards the high-spin states in Cd-127. The underlying mechanism of a strong GT transition from the Ag-127 isomer is discussed in terms of configuration-dependent optimization of the effective single-particle energies in the framework of a shell-model approach.
|
|
|
Zago, L. et al, Gadea, A., & Algora, A. (2022). High-spin states in Po-212 above the alpha-decaying (18(+)) isomer. Phys. Lett. B, 834, 137457–5pp.
Abstract: The nucleus Po-212 has been produced through the fragmentation of a U-238 primary beam at 1GeV/nucleon at GSI, separated with the FRagment Separator, FRS, and studied via isomer gamma-decay spectroscopy with the RISING setup. Two delayed previously unknown gamma rays have been observed. One has been attributed to the E3 decay of a 21(-) isomeric state feeding the alpha-emitting 45-s (18(+)) high-spin isomer. The other gamma-ray line has been assigned to the decay of a higher-lying 23(+) metastable state. These are the first observations of high-spin states above the Po-212 (18(+)) isomer, by virtue of the selectivity obtained via ion-by-ion identification of U-238 fragmentation products. Comparison with shell-model calculations points to shortfalls in the nuclear interactions involving high- jproton and neutron orbitals, to which the region around Z similar to 100 is sensitive.
|
|