|
|
Garcia Rivas, I., Fernandez Prieto, A., Vazquez Regueiro, P., Garcia Fernandez, D., Kögler, T., Römer, K., et al. (2025). Performance of a CeBr3 scintillator coupled to a photomultiplier tube with an active voltage divider under high bremsstrahlung fluences. J. Instrum., 20(11), P11016–25pp.
Abstract: Proton therapy lacks a standard method to verify the proton range during the treatments in the clinical routine. In this context, the monitoring of prompt gamma-rays in a coaxial geometry using a compact detector based on a CeBr3 scintillator coupled to a commercial photomultiplier tube (PMT) could lead to the identification of proton range deviations. Such detection system could be easily integrated in every treatment room. Although measuring in this geometry profits from an advantageous solid angle, the detector is also exposed to an extreme gamma-ray rate, of up to 10 Mcps. In this work, we present the first experimental performance evaluation for the proposed detector by irradiating it at very high bremsstrahlung rates at the gamma ELBE facility. Using a customized active voltage divider to supply voltage to the PMT, the detection system was able to sustain a photon rate higher than 12 Mcps without dead time while keeping gain drifts below 15% in the best configuration, and to achieve a sub-nanosecond time resolution.
|
|
|
|
Garonna, A., Amaldi, U., Bonomi, R., Campo, D., Degiovanni, A., Garlasche, M., et al. (2010). Cyclinac medical accelerators using pulsed C6+/H-2(+) ion sources. J. Instrum., 5, C09004–19pp.
Abstract: Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed 'cyclinacs'. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multipainting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both C6+ and H-2(+) ions in short pulses (1.5 μs flat-top) and with sufficient intensity (at least 10(8) fully stripped carbon ions per pulse at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high-gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.
|
|
|
|
Muñoz, E., Barrio, J., Bemmerer, D., Etxebeste, A., Fiedler, F., Hueso-Gonzalez, F., et al. (2018). Tests of MACACO Compton telescope with 4.44 MeV gamma rays. J. Instrum., 13, P05007–13pp.
Abstract: Hadron therapy offers the possibility of delivering a large amount of radiation dose to tumors with minimal absorption by the surrounding healthy tissue. In order to fully exploit the advantages of this technique, the use of real-time beam monitoring devices becomes mandatory. Compton imaging devices can be employed to map the distribution of prompt gamma emission during the treatment and thus assess its correct delivery. The Compton telescope prototype developed at IFIC-Valencia for this purpose is made of three layers of LaBr3 crystals coupled to silicon photomultipliers. The system has been tested in a 4.44 MeV gamma field at the 3 MV Tandetron accelerator at HZDR, Dresden. Images of the target with the system in three different positions separated by 10 mm were successfully reconstructed. This indicates the ability of MACACO for imaging the prompt gamma rays emitted at such energies.
Keywords: Compton imaging; Instrumentation for hadron therapy; Gamma detectors (scintillators, CZT, HPG, HgI etc); Photon detectors for UV, visible and IR photons (solid state) (PIN diodes, APDs, Si PMTs, G APDs, CCDs, EBCCDs, EMCCDs etc)
|
|