|
Garcia, A. R., Martinez, T., Cano-Ott, D., Castilla, J., Guerrero, C., Marin, J., et al. (2012). MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements. J. Instrum., 7, C05012–12pp.
Abstract: The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.
|
|
|
Gomez-Cadenas, J. J., Benlloch-Rodriguez, J. M., Ferrario, P., Monrabal, F., Rodriguez, J., & Toledo, J. F. (2016). Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study. J. Instrum., 11, P09011–18pp.
Abstract: The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.
|
|