|
KM3NeT Collaboration(Adrian-Martinez, S. et al), Aguilar, J. A., Bigongiari, C., Calvo Diaz-Aldagalan, D., Emanuele, U., Gomez-Gonzalez, J. P., et al. (2013). Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. J. Instrum., 8, T03006–20pp.
Abstract: Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.
|
|
|
KM3NeT Collaboration(Adrian-Martinez, S. et al), Barrios-Marti, J., Calvo, D., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., et al. (2016). A method to stabilise the performance of negatively fed KM3NeT photomultipliers. J. Instrum., 11, P12014–12pp.
Abstract: The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier tubes that will have to be operated in a stable and reliable fashion. In this context, the stability of the dark counts has been investigated for photomultiplier tubes with negative high voltage on the photocathode and held in insulating support structures made of 3D printed nylon material. Small gaps between the rigid support structure and the photomultiplier tubes in the presence of electric fields can lead to discharges that produce dark count rates that are highly variable. A solution was found by applying the same insulating varnish as used for the high voltage bases directly to the outside of the photomultiplier tubes. This transparent conformal coating provides a convenient and inexpensive method of insulation.
|
|