|
NEXT Collaboration(Simon, A. et al), Gomez-Cadenas, J. J., Alvarez, V., Benlloch-Rodriguez, J. M., Botas, A., Carcel, S., et al. (2017). Application and performance of an ML-EM algorithm in NEXT. J. Instrum., 12, P08009–22pp.
Abstract: The goal of the NEXT experiment is the observation of neutrinoless double beta decay in Xe-136 using a gaseous xenon TPC with electroluminescent amplification and specialized photodetector arrays for calorimetry and tracking. The NEXT Collaboration is exploring a number of reconstruction algorithms to exploit the full potential of the detector. This paper describes one of them: the Maximum Likelihood Expectation Maximization (ML-EM) method, a generic iterative algorithm to find maximum-likelihood estimates of parameters that has been applied to solve many different types of complex inverse problems. In particular, we discuss a bi-dimensional version of the method in which the photosensor signals integrated over time are used to reconstruct a transverse projection of the event. First results show that, when applied to detector simulation data, the algorithm achieves nearly optimal energy resolution (better than 0.5% FWHM at the Q value of 136Xe) for events distributed over the full active volume of the TPC.
|