|
Becker, R., Buck, A., Casella, C., Dissertori, G., Fischer, J., Howard, A., et al. (2017). The SAFIR experiment: Concept, status and perspectives. Nucl. Instrum. Methods Phys. Res. A, 845, 648–651.
Abstract: The SAFIR development represents a novel Positron Emission Tomography (PET) detector, conceived for preclinical fast acquisitions inside the bore of a Magnetic Resonance Imaging (MRI) scanner. The goal is hybrid and simultaneous PET/MRI dynamic studies at unprecedented temporal resolutions of a few seconds. The detector relies on matrices of scintillating LSO-based crystals coupled one-to-one with SiPM arrays and readout by fast ASIC5 with excellent timing resolution and high rate capabilities. The paper describes the detector concept and the initial results in terms of simulations and characterisation measurements.
|
|
Capozziello, S., Harko, T., Lobo, F. S. N., Olmo, G. J., & Vignolo, S. (2014). The Cauchy problem in hybrid metric-Palatini f(X)-gravity. Int. J. Geom. Methods Mod. Phys., 11(5), 1450042–12pp.
Abstract: The well-formulation and the well-posedness of the Cauchy problem are discussed for hybrid metric-Palatini gravity, a recently proposed modified gravitational theory consisting of adding to the Einstein-Hilbert Lagrangian an f(R)-term constructed a la Palatini. The theory can be recast as a scalar-tensor one predicting the existence of a light long-range scalar field that evades the local Solar System tests and is able to modify galactic and cosmological dynamics, leading to the late-time cosmic acceleration. In this work, adopting generalized harmonic coordinates, we show that the initial value problem can always be well-formulated and, furthermore, can be well-posed depending on the adopted matter sources.
|
|
Guadilla, V., Algora, A., Estienne, M., Fallot, M., Gelletly, W., Porta, A., et al. (2024). First measurements with a new fl-electron detector for spectral shape studies. J. Instrum., 19(2), P02027–21pp.
Abstract: The shape of the electron spectrum emitted in /3 decay carries a wealth of information about nuclear structure and fundamental physics. In spite of that, few dedicated measurements have been made of /3 -spectrum shapes. In this work we present a newly developed detector for /3 electrons based on a telescope concept. A thick plastic scintillator is employed in coincidence with a thin silicon detector. The first measurements employing this detector have been carried out with mono -energetic electrons from the high-energy resolution electron -beam spectrometer at Bordeaux. Here we report on the good reproduction of the experimental spectra of mono -energetic electrons using Monte Carlo simulations. This is a crucial step for future experiments, where a detailed Monte Carlo characterization of the detector is needed to determine the shape of the /3 -electron spectra by deconvolution of the measured spectra with the response function of the detector. A chamber to contain two telescope assemblies has been designed for future /3 -decay experiments at the Ion Guide Isotope Separator On -Line facility in Jyvaskyla, aimed at improving our understanding of reactor antineutrino spectra.
|
|
Pierre Auger Collaboration(Abreu, P. et al), & Pastor, S. (2011). The exposure of the hybrid detector of the Pierre Auger Observatory. Astropart Phys., 34(6), 368–381.
Abstract: The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The “hybrid” detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.
|
|
Pierre Auger Collaboration(Abreu, P. et al), & Pastor, S. (2011). The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory. Astropart Phys., 35(5), 266–276.
Abstract: In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10(17) and 10(19) eV and zenith angles up to 65 degrees. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data
|
|
Poley, L. et al, & Lacasta, C. (2017). Investigations into the impact of locally modified sensor architectures on the detection efficiency of silicon micro-strip sensors. J. Instrum., 12, P07006–17pp.
Abstract: The High Luminosity Upgrade of the LHC will require the replacement of the Inner Detector of ATLAS with the Inner Tracker (ITk) in order to cope with higher radiation levels and higher track densities. Prototype silicon strip detector modules are currently developed and their performance is studied in both particle test beams and X-ray beams. In previous test beam measurements of prototype modules, the response of silicon sensors has been studied in detailed scans across individual sensor strips. These scans found instances of sensor strips collecting charge across areas on the sensor deviating from the geometrical width of a sensor strip. The variations have been linked to local features of the sensor architecture. This paper presents results of detailed sensor measurements in both X-ray and particle beams investigating the impact of sensor features (metal pads and p-stops) on the sensor strip response.
|
|
Poley, L. et al, Lacasta, C., & Soldevila, U. (2016). Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam. J. Instrum., 11, P07023–12pp.
Abstract: The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6.10(34) cm(-2) s(-1). A consequence of this increased luminosity is the expected radiation damage at 3000 fb(-1) after ten years of operation, requiring the tracking detectors to withstand fluences to over 1.10(16) 1 MeV n(eq)/cm(2) . In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor – utilizing bi-metal readout layers – wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.
|
|
Zhou, B., Sun, Z. F., Liu, X., & Zhu, S. L. (2017). Chiral corrections to the 1(-+) exotic meson mass. Chin. Phys. C, 41(4), 043101–12pp.
Abstract: We first construct the effective chiral Lagrangians for the 1(-+) exotic mesons. With the infrared regularization scheme, we derive the one-loop infrared singular chiral corrections to the pi(1) (1600) mass explicitly. We investigate the variation of the different chiral corrections with the pion mass under two schemes. Hopefully, the explicit non-analytical chiral structures will be helpful for the chiral extrapolation of lattice data from the dynamical lattice QCD simulation of either the exotic light hybrid meson or the tetraquark state.
|