|
Cabello, J., Etxebeste, A., Llosa, G., & Ziegler, S. I. (2015). Simulation study of PET detector limitations using continuous crystals. Phys. Med. Biol., 60(9), 3673–3694.
Abstract: Continuous crystals can potentially obtain better intrinsic detector spatial resolution compared to pixelated crystals, additionally providing depth of interaction (DoI) information from the light distribution. To achieve high performance sophisticated interaction position estimation algorithms are required. There are a number of algorithms in the literature applied to different crystal dimensions and different photodetectors. However, the different crystal properties and photodetector array geometries have an impact on the algorithm performance. In this work we analysed, through Monte Carlo simulations, different combinations of realistic crystals and photodetector parameters to better understand their influence on the interaction position estimation accuracy, with special emphasis on the DoI. We used an interaction position estimation based on an analytical model for the present work. Different photodetector granulation schemes were investigated. The impact of the number of crystal faces readout by photodetectors was studied by simulating scenarios with one and two photodetectors. In addition, crystals with different levels of reflection and aspect ratios (AR) were analysed. Results showed that the impact of photodetector granularity is mainly shown near the edges and specially in the corners of the crystal. The resulting intrinsic spatial resolution near the centre with a 12 x 12 x 10 mm(3) LYSO crystal was 0.7-0.9 mm, while the average spatial resolution calculated on the entire crystal was 0.77 +/- 0.18 mm for all the simulated geometries with one and two photodetectors. Having front and back photodetectors reduced the DoI bias (Euclidean distance between estimated DoI and real DoI) and improved the transversal resolution near the corners. In scenarios with one photodetector, small AR resulted in DoI inaccuracies for absorbed events at the entrance of the crystal. These inaccuracies were slightly reduced either by increasing the AR or reducing the amount of reflected light, and highly mitigated using two photodetectors. Using one photodetector, we obtained a piecewise DoI error model with a DoI resolution of 0.4-0.9 mm for a 1.2 AR crystal, and we observed that including a second photodetector or reducing the amount of reflections reduced the DoI bias but did not significantly improve the DoI resolution. Translating the piecewise DoI error model obtained in this study to image reconstruction we obtained a spatial resolution variability of 0.39 mm using 85% of the FoV, compared to 2.59 mm and 1.87 mm without DoI correction or with a dual layer system, respectively.
|
|
Fujita, Y., Rubio, B., & Gelletly, W. (2011). Spin-isospin excitations probed by strong, weak and electro-magnetic interactions. Prog. Part. Nucl. Phys., 66(3), 549–606.
Abstract: Gamow-Teller (GT) transitions are the most common weak interaction processes of spin-isospin (sigma tau) type in atomic nuclei. They are of interest not only in nuclear physics but also in astrophysics; they play an important role in supernovae explosions and nucleosynthesis. The direct study of weak decay processes, however, gives relatively limited information about GT transitions and the states excited via GT transitions (GT states); beta decay can only access states at excitation energies lower than the decay Q-value, and neutrino-induced reactions have very small cross-sections. However, one should note that beta decay has a direct access to the absolute GT transition strengths B(GT) from a study of half-lives, Q(beta)-values and branching ratios. They also provide information on GT transitions in nuclei far-from-stability. Studies of M1 gamma transitions provide similar information. In contrast, the complementary charge-exchange (CE) reactions, such as the (p, n) or ((3)He, t) reactions at intermediate beam energies and 0 degrees, can selectively excite GT states up to high excitation energies in the final nucleus. It has been found empirically that there is a close proportionality between the cross-sections at 0 degrees and the transition strengths B(GT) in these CE reactions. Therefore, CE reactions are useful tools to study the relative values of B(GT) strengths up to high excitation energies. In recent ((3)He, t) measurements, one order-of-magnitude improvement in the energy resolution has been achieved. This has made it possible to make one-to-one comparisons of GT transitions studied in CE reactions and beta decays. Thus GT strengths in ((3)He, t) reactions can be normalised by the beta-decay values. In addition, comparisons with closely related M1 transitions studied in gamma decay or electron inelastic scattering [(e, e')1, and furthermore with “spin” M I transitions that can be studied by proton inelastic scattering [(p, p')[ have now been made possible. In these comparisons, the isospin quantum number T and associated symmetry structure in the same mass A nuclei (isobars) play a key role. Isospin symmetry can extend our scope even to the structures of unstable nuclei that are far from reach at present unstable beam factories.
|
|
Llosa, G., Barrillon, P., Barrio, J., Bisogni, M. G., Cabello, J., Del Guerra, A., et al. (2013). High performance detector head for PET and PET/MR with continuous crystals and SiPMs. Nucl. Instrum. Methods Phys. Res. A, 702, 3–5.
Abstract: A high resolution PET detector head for small animal PET applications has been developed. The detector is composed of a 12 mm x 12 mm continuous LYSO crystal coupled to a 64-channel monolithic SiPM matrix from FBK-irst. Crystal thicknesses of 5 mm and 10 mm have been tested, both yielding an intrinsic spatial resolution around 0.7 mm FWHM with a position determination algorithm that can also provide depth-of-interaction information. The detectors have been tested in a rotating system that makes it possible to acquire tomographic data and reconstruct images of Na-22 sources. An image reconstruction method specifically adapted for continuous crystals has been employed. The Full Width at Half Maximum measured from a point source reconstructed with ML-EM was 0.7 mm with the 5 mm crystal and 0.8 mm with the 10 mm crystal.
|