|
Freitas, E. D. C., Monteiro, C. M. B., Ball, M., Gomez-Cadenas, J. J., Lopes, J. A. M., Lux, T., et al. (2010). Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0 nu beta beta) search. Phys. Lett. B, 684(4-5), 205–210.
Abstract: The search for neutrinoless double beta decay (0 nu beta beta) is an important topic in contemporary physics with many active experiments. New projects are planning to use high-pressure xenon gas as both source and detection medium. The secondary scintillation processes available in noble gases permit large amplification with negligible statistical fluctuations, offering the prospect of energy resolution approaching the Fano factor limit. This Letter reports results for xenon secondary scintillation yield, at room temperature, as a function of electric field in the gas scintillation gap for pressures ranging from 2 to 10 bar. A Large Area Avalanche Photodiode (LAAPD) collected the VUV secondary scintillation produced in the gas. X-rays directly absorbed in the LAAPD are used as a reference for determining the number of charge carriers produced by the scintillation pulse and, hence, the number of photons impinging the LAAPD. The number of photons produced per drifting electron and per kilovolt, the so-called scintillation amplification parameter, displays a small increase with pressure, ranging from 141 +/- 6 at 2 bar to 170 +/- 10 at 8 bar. In our setup, this Parameter does not increase above 8 bar due to nonnegligible electron attachment. The results are in good agreement with those presented in the literature in the 1 to 3 bar range. The increase of the scintillation amplification parameter with pressure for high gas densities has been also observed in former work at cryogenic temperatures.
|
|
NEXT Collaboration(Alvarez, V. et al), Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., Gil, A., et al. (2013). Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC. Nucl. Instrum. Methods Phys. Res. A, 708, 101–114.
Abstract: We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 Xe-136 neutrino-less double beta decay (0 nu beta beta) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of similar to 1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and similar to 5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7-20 better than that of the current leading 0 nu beta beta experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0 nu beta beta search.
|