|
|
Curtin, D. et al, & Hirsch, M. (2019). Long-lived particles at the energy frontier: the MATHUSLA physics case. Rep. Prog. Phys., 82(11), 116201–133pp.
Abstract: We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the μm scale up to the Big Bang Nucleosynthesis limit of similar to 10(7) m. Neutral LLPs with lifetimes above similar to 100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.
|
|
|
Donini, A., Folgado, M. G., Herrero-Garcia, J., Landini, G., Muñoz-Ovalle, A., & Rius, N. (2025). Dark Matter in an evanescent three-brane Randall-Sundrum scenario. J. High Energy Phys., 11(11), 037–42pp.
Abstract: Apart from its gravitational interactions, dark matter (DM) has remained so far elusive in laboratory searches. One possible explanation is that the relevant interactions to explain its relic abundance are mainly gravitational. In this work we consider an extra-dimensional Randall-Sundrum scenario with a TeV-PeV IR brane, where the Standard Model is located, and a GeV-TeV deep IR (DIR) one, where the DM lies. When the curvatures of the bulk to the left and right of the IR brane are very similar, the tension of the IR brane is significantly smaller than that of the other two branes, and therefore we term it “evanescent”. In this setup, the relic abundance of DM arises from the freeze-out mechanism, thanks to DM annihilations into radions and gravitons. Focusing on a scalar singlet DM candidate, we compute and apply current and future constraints from direct, indirect and collider-based searches. Our findings demonstrate the viability of this scenario and highlight its potential testability in upcoming experiments. We also discuss the possibility of inferring the number of branes if the radion and several Kaluza-Klein graviton resonances are detected at a future collider.
|