|
Jordan, D., Tain, J. L., Algora, A., Agramunt, J., Domingo-Pardo, C., Gomez-Hornillos, M. B., et al. (2013). Measurement of the neutron background at the Canfranc Underground Laboratory LSC. Astropart Phys., 42, 1–6.
Abstract: The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).
|
|
|
Plaza, J., Martinez, T., Becares, V., Cano-Ott, D., Villamarin, D., de Rada, A. P., et al. (2023). Thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC). Astropart Phys., 146, 102793–9pp.
Abstract: The thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) has been determined using several He-3 proportional counter detectors. Bare and Cd shielded counters were used in a series of long measurements. Pulse shape discrimination techniques were applied to discriminate between neutron and gamma signals as well as other intrinsic contributions. Montecarlo simulations allowed us to estimate the sensitivity of the detectors and calculate values for the background flux of thermal neutrons inside Hall-A of LSC. The obtained value is (3.5 +/- 0.8)x10(-6) n/cm(2)s, and is within an order of magnitude compared to similar facilities.
|
|