|
Baeza-Ballesteros, J., Bijnens, J., Husek, T., Romero-Lopez, F., Sharpe, S. R., & Sjo, M. (2023). The isospin-3 three-particle K-matrix at NLO in ChPT. J. High Energy Phys., 05(5), 187–56pp.
Abstract: The three-particle K-matrix, K-df,K-3, is a scheme-dependent quantity that parametrizes short-range three-particle interactions in the relativistic-field-theory three particle finite-volume formalism. In this work, we compute its value for systems of three pions at maximal isospin through next-to-leading order (NLO) in Chiral Perturbation Theory (ChPT). We compare the values to existing lattice QCD results and find that the agreement between lattice QCD data and ChPT in the first two coefficients of the threshold expansion of K-df,K-3 is significantly improved with respect to leading order once NLO effects are incorporated.
|
|
Baeza-Ballesteros, J., Bijnens, J., Husek, T., Romero-Lopez, F., Sharpe, S. R., & Sjo, M. (2024). The three-pion K-matrix at NLO in ChPT. J. High Energy Phys., 03(3), 048–43pp.
Abstract: The three-particle K-matrix, K-df,K-3, is a scheme-dependent quantity that parametrizes short-range three-particle interactions in the relativistic-field-theory three-particle finite-volume formalism. In this work, we compute its value for systems of three pions in all isospin channels through next-to-leading order in Chiral Perturbation Theory, generalizing previous work done at maximum isospin. We obtain analytic expressions through quadratic order (or cubic order, in the case of zero isospin) in the expansion about the three-pion threshold.
|
|
Baeza-Ballesteros, J., Hernandez, P., & Romero-Lopez, F. (2022). A lattice study of pi pi scattering at large N-c. J. High Energy Phys., 06(6), 049–39pp.
Abstract: We present the first lattice study of pion-pion scattering with varying number of colors, N-c. We use lattice simulations with four degenerate quark flavors, N-f = 4, and N-c= 3 – 6. We focus on two scattering channels that do not involve vacuum diagrams. These correspond to two irreducible representations of the SU(4) flavor group: the fully symmetric one, SS, and the fully antisymmetric one, AA. The former is a repulsive channel equivalent to the isospin-2 channel of SU(2). By contrast, the latter is attractive and only exists for N-f >= 4. A representative state is (vertical bar D-s(+) pi(+)> – vertical bar D+ K+ >) /root 2. Using Lfischer's formalism, we extract the near-threshold scattering amplitude and we match our results to Chiral Perturbation Theory (ChPT) at large N-c. For this, we compute the analytical U(N-f) ChPT prediction for two-pion scattering, and use the lattice results to constrain the N-c scaling of the relevant low-energy couplings.
|