|
Addazi, A. et al, Martinez-Mirave, P., Mitsou, V. A., Palomares-Ruiz, S., Tortola, M., & Zornoza, J. D. (2022). Quantum gravity phenomenology at the dawn of the multi-messenger era-A review. Prog. Part. Nucl. Phys., 125, 103948–119pp.
Abstract: The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
|
|
|
Aggarwal, N. et al, & Figueroa, D. G. (2021). Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. Living Rev. Relativ., 24(1), 4–74pp.
Abstract: The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational-wave searches at frequencies above the LIGO/Virgo band, with a particular focus on Ultra High-Frequency Gravitational Waves (UHF-GWs), covering the MHz to GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the Standard Model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts that have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop “Challenges and opportunities of high-frequency gravitational wave detection” held at ICTP Trieste, Italy in October 2019, that set up the stage for the recently launched Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative.
|
|
|
Amarilo, K. M., Ferreira Filho, M. B., Araujo Filho, A. A., & Reis, J. A. A. S. (2024). Gravitational waves effects in a Lorentz-violating scenario. Phys. Lett. B, 855, 138785–7pp.
Abstract: This paper focuses on how the production and polarization of gravitational waves are affected by spontaneous Lorentz symmetry breaking, which is driven by a self-interacting vector field. Specifically, we examine the impact of a smooth quadratic potential and a non-minimal coupling, discussing the constraints and causality features of the linearized Einstein equation. To analyze the polarization states of a plane wave, we consider a fixed vacuum expectation value (VEV) of the vector field. Remarkably, we verify that a space-like background vector field modifies the polarization plane and introduces a longitudinal degree of freedom. In order to investigate the Lorentz violation effect on the quadrupole formula, we use the modified Green function. Finally, we show that the space-like component of the background field leads to a third-order time derivative of the quadrupole moment, and the bounds for the Lorentz-breaking coefficients are estimated as well.
|
|
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Barrios-Marti, J., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., Lambard, G., Mangano, S., et al. (2014). Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data. J. Cosmol. Astropart. Phys., 11(11), 017–12pp.
Abstract: This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08 x 10(46) erg s(-1) This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.
|
|
|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2023). Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector. J. Cosmol. Astropart. Phys., 04(4), 004–19pp.
Abstract: Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV, thanks to the inclusion of both track-like events (mainly induced by v μcharged -current interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within +/- 500 s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,v emitted as neutrinos of all flavours and on the ratio fv = Etot,v/EGW between neutrino and GW emissions are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,v < 4.0 x 1053 erg and fv < 0.15 (respectively, Etot,v < 3.2 x 1053 erg and fv < 0.88) for E-2 spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been tested.
|
|
|
ANTARES, I. C., LIGO and Virgo Collaborations(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Colomer, M., Hernandez-Rey, J. J., Illuminati, G., et al. (2019). Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophys. J., 870(2), 134–16pp.
Abstract: Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.
|
|
|
ANTARES, I. C., Pierre Auger, LIGO Sci and VIRGO Collaborations(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., et al. (2017). Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. Lett., 850(2), L35–18pp.
Abstract: The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within +/- 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle.
|
|
|
Araujo Filho, A. A., Jusufi, K., Cuadros-Melgar, B., & Leon, G. (2024). Dark matter signatures of black holes with Yukawa potential. Phys. Dark Universe, 44, 101500–20pp.
Abstract: This study uses a nonsingular Yukawa-modified potential to obtain a static and spherically symmetric black hole solution with a cosmological constant. Such Yukawa-like corrections are encoded in two parameters, alpha and lambda, that modify Newton's law of gravity in large distances, and a deformation parameter l(0), which plays an essential role in short distances. The most significant effect is encoded in alpha, which modifies the total black hole mass with an extra mass proportional to alpha M, mimicking the dark matter effects at large distances from the black hole. On the other hand, the effect due to lambda is small for astrophysical values. We scrutinize the quasinormal frequencies and shadows associated with a spherically symmetric black hole and the thermodynamical behavior influenced by the Yukawa potential. In particular, the thermodynamics of this black hole displays a rich behavior, including possible phase transitions. We use the WKB method to probe the quasinormal modes of massless scalar, electromagnetic, and gravitational field perturbations. In order to check the influence of the parameters on the shadow radius, we consider astrophysical data to determine their values, incorporating information on an optically thin radiating and infalling gas surrounding a black hole to model the black hole shadow image. In particular, we consider Sgr A* black hole as an example and we find that its shadow radius changes by order of 10(-9), meaning that the shadow radius of a black hole with Yukawa potential practically gives rise to the same result encountered in the Schwarzschild black hole. Also, in the eikonal regime, using astrophysical data for Yukawa parameters, we show that the value of the real part of the QNMs frequencies changes by 10(-18). Such Yukawa-like corrections are, therefore, difficult to measure by observations of gravitational waves using the current technology.
|
|
|
Araujo Filho, A. A., Jusufi, K., Cuadros-Melgar, B., Leon, G., Jawad, A., & Pellicer, C. E. (2024). Charged black holes with Yukawa potential. Phys. Dark Universe, 46, 101711–16pp.
Abstract: This study derives a novel family of charged black hole solutions featuring short- and long-range modifications. These are achieved through a Yukawa-like gravitational potential modification and a nonsingular electric potential incorporation. The short-range corrections encode quantum gravity effects, while the long-range adjustments simulate gravitational effects akin to those attributed to dark matter. Our investigation reveals that the total mass of the black hole undergoes corrections owing to the apparent presence of dark matter mass and the self-adjusted electric charge mass. Two distinct solutions are discussed: a regular black hole solution characterizing small black holes, where quantum effects play a crucial role, and a second solution portraying large black holes at considerable distances, where the significance of Yukawa corrections comes into play. Notably, these long-range corrections contribute to an increase in the total mass and hold particular interest as they can emulate the role of dark matter. Finally, we explore the phenomenological aspects of the black hole. Specifically, we examine the influence of electric charge and Yukawa parameters on thermodynamic quantities, the quasinormal modes for the charged scalar perturbations as well as for the vector perturbations, analysis of the geodesics of light/massive particles, and the accretion of matter onto the charged black hole solution.
|
|
|
Auclair, P., Blanco-Pillado, J. J., Figueroa, D. G., Jenkins, A. C., Lewicki, M., Sakellariadou, M., et al. (2020). Probing the gravitational wave background from cosmic strings with LISA. J. Cosmol. Astropart. Phys., 04(4), 034–50pp.
Abstract: Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the properties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions G μgreater than or similar to O(10(-17)), improving by about 6 orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially 3 orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISA's frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
|
|