|
Afonso, V. I., Mora-Perez, G., Olmo, G. J., Orazi, E., & Rubiera-Garcia, D. (2022). An infinite class of exact rotating black hole metrics of modified gravity. J. Cosmol. Astropart. Phys., 03(3), 052–14pp.
Abstract: We build an infinite class of exact axisymmetric solutions of a metric-affine gravity theory, namely, Eddington-inspired Born-Infeld gravity, coupled to an anisotropic fluid as a matter source. The solution-generating method employed is not unique of this theory but can be extended to other Ricci-Based Gravity theories (RBGs), a class of theories built out of contractions of the Ricci tensor with the metric. This method exploits a correspondence between the space of solutions of General Relativity and that of RBGs, and is independent of the symmetries of the problem. For the particular case in which the fluid is identified with non-linear electromagnetic fields we explicitly derive the corresponding axisymmetric solutions. Finally, we use this result to work out the counterpart of the Kerr-Newman black hole when Maxwell electrodynamics is set on the metric-affine side. Our results open up an exciting new avenue for testing new gravitational phenomenology in the fields of gravitational waves and shadows out of rotating black holes.
|
|
|
Boudet, S., Bombacigno, F., Olmo, G. J., & Porfirio, P. (2022). Quasinormal modes of Schwarzschild black holes in projective invariant Chern-Simons modified gravity. J. Cosmol. Astropart. Phys., 05(5), 032–29pp.
Abstract: We generalize the Chern-Simons modified gravity to the metric-affine case and impose projective invariance by supplementing the Pontryagin density with homothetic curvature terms which do not spoil topologicity. The latter is then broken by promoting the coupling of the Chern-Simons term to a (pseudo)-scalar field. The solutions for torsion and nonmetricity are derived perturbatively, showing that they can be iteratively obtained from the background fields. This allows us to describe the dynamics for the metric and the scalar field perturbations in a self-consistent way, and we apply the formalism to the study of quasi normal modes in a Schwarzschild black hole background. Unlike in the metric formulation of this theory, we show that the scalar field is endowed with dynamics even in the absence of its kinetic term in the action. Finally, using numerical methods we compute the quasinormal frequencies and characterize the late-time power law tails for scalar and metric perturbations, comparing the results with the outcomes of the purely metric approach.
|
|
|
Lessa, L. A., Maluf, R. V., Silva, J. E. G., & Almeida, C. A. S. (2024). Braneworlds in warped Einsteinian cubic gravity. J. Cosmol. Astropart. Phys., 05(5), 123–25pp.
Abstract: Einstenian cubic gravity (ECG) is a modified theory of gravity constructed with cubic contractions of the curvature tensor. This theory has the remarkable feature of having the same two propagating degrees of freedom of Einstein gravity (EG), at the perturbative level on maximally symmetric spacetimes. The additional unstable modes steaming from the higher order derivative dynamics are suppressed provided that we consider the ECG as an effective field theory wherein the cubic terms are seen as perturbative corrections of the Einstein -Hilbert term. Extensions of ECG have been proposed in cosmology and compact objects in order to probe if this property holds in more general configurations. In this work, we construct a modified ECG gravity in a five dimensional warped braneworld scenario. By assuming a specific combination of the cubic parameters, we obtained modified gravity equations of motion with terms up to second -order. For a thin 3-brane, the cubic -gravity corrections yield an effective positive bulk cosmological constant. Thus, in order to keep the 5D bulk warped compact, an upper bound of the cubic parameter with respect to the bulk curvature was imposed. For a thick brane, the cubic -gravity terms modify the scalar field potential and its corresponding vacuum. Nonetheless, the domain -wall structure with a localized source is preserved. At the perturbative level, the Kaluza-Klein (KK) tensor gravitational modes are stable and possess a localized massless mode provided the cubic corrections are small compared to the EG braneworld.
|
|
|
Olmo, G. J., Orazi, E., & Pradisi, G. (2022). Conformal metric-affine gravities. J. Cosmol. Astropart. Phys., 10(10), 057–21pp.
Abstract: We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stuckelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f(R) and f(R, R μnu R μnu) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.
|
|