|
AGATA Collaboration, Doncel, M., Recchia, F., Quintana, B., Gadea, A., & Farnea, E. (2010). Experimental test of the background rejection, through imaging capability, of a highly segmented AGATA germanium detector. Nucl. Instrum. Methods Phys. Res. A, 622(3), 614–618.
Abstract: The development of highly segmented germanium detectors as well as the algorithms to identify the position of the interaction within the crystal opens the possibility to locate the gamma-ray source using Compton imaging algorithms. While the Compton-suppression shield, coupled to the germanium detector in conventional arrays, works also as an active filter against the gamma rays originated outside the target, the new generation of position sensitive gamma-ray detector arrays has to fully rely on tracking capabilities for this purpose. In specific experimental conditions, as the ones foreseen at radioactive beam facilities, the ability to discriminate background radiation improves the sensitivity of the gamma spectrometer. In this work we present the results of a measurement performed at the Laboratori Nazionali di Legnaro (LNL) aiming the evaluation of the AGATA detector capabilities to discriminate the origin of the gamma rays on an event-by-event basis. It will be shown that, exploiting the Compton scattering formula, it is possible to track back gamma rays coming from different positions, assigning them to specific emitting locations. These imaging capabilities are quantified for a single crystal AGATA detector.
|
|
Doncel, M., Cederwall, B., Gadea, A., Gerl, J., Kojouharov, I., Martin, S., et al. (2017). Performance and imaging capabilities of the DEGAS high-resolution gamma-ray detector array for the DESPEC experiment at FAIR. Nucl. Instrum. Methods Phys. Res. A, 873, 36–38.
Abstract: Monte Carlo simulations of one of the possible configurations of the imaging phase for the DEGAS spectrometer situated at the DESPEC/NUSTAR experiment have been performed. The geometry consists of the coupling of the high-resolution gamma spectroscopy array, AGATA, with a high-resolution segmented planar detector utilized as an implantation detector in a compact configuration. The sensitivity and performance of the array in terms of efficiency and imaging capability is deduced.
|
|
Goasduff, A., Valiente-Dobon, J. J., Lunardi, S., Haas, F., Gadea, A., de Angelis, G., et al. (2014). Counting rate measurements for lifetime experiments using the RDDS method with the new generation gamma-ray array AGATA. Nucl. Instrum. Methods Phys. Res. A, 758, 1–3.
Abstract: The differential Recoil Distance Doppler Shift (RDDS) method after multinucleon transfer (MNT) reactions to measure lifetimes of excited states in neutron-rich nuclei requires the use of a thick energy degrader for the recoiling ejectiles that are then detected in a spectrometer. This type of measurements greatly benefits from the use of the new generation segmented gamma-ray detectors, such as the AGATA demonstrator which offers unprecedented energy and angular resolutions. In order to make an optimized choice of the material and the thickness of the degrader for lifetime measurements using the RODS method after MNT, an experiment has been performed with the AGATA demonstrator. Counting rate measurements for different degraders are presented.
|
|
Krzysiek, M. et al, Gadea, A., Huyuk, T., & Barrientos, D. (2014). Study of the soft dipole modes in Ce-140 via inelastic scattering of O-17. Phys. Scr., 89(5), 054016–6pp.
Abstract: The main aim of this study was a deeper understanding of the nuclear structure properties of the soft dipole modes in Ce-140, excited via inelastic scattering of weakly bound O-17 projectiles. An important aim was to investigate the 'splitting' of the PDR into two parts: a low-energy isoscalar component dominated by neutron-skin oscillations and a higher-energy component lying on the tail of the giant dipole resonance of a rather isovector character. This was already observed for this nucleus, investigated in (alpha, alpha') and (gamma,gamma') experiments. The experiment was performed at Laboratori Nazionali di Legnaro, Italy. Inelastic scattering of O-17 ion beam at 20 MeV A(-1) was used to excite the resonance modes in the Ce-140 target. Gamma-rays were registered by five triple clusters of AGATA-Demonstrator and nine large volume scintillators (LaBr3). The scattered O-17 ions were identified by two Delta E – E Si telescopes of the TRACE array mounted inside the scattering chamber. The telescopes consisted of two segmented Si-pad detectors, each of 60 pixels. Very preliminary data have shown a strong domination of the E1 transitions in the 'pygmy' region with a character more similar to the one obtained in alpha scattering experiment.
|
|
Mistry, A. K. et al, Tain, J. L., Agramunt, J., Algora, A., Guadilla, V., Morales, A. I., et al. (2022). The DESPEC setup for GSI and FAIR. Nucl. Instrum. Methods Phys. Res. A, 1033, 166662–18pp.
Abstract: The DEcay SPECtroscopy (DESPEC) setup for nuclear structure investigations was developed and commissioned at GSI, Germany in preparation for a full campaign of experiments at the FRS and Super-FRS. In this paper, we report on the first employment of the setup in the hybrid configuration with the AIDA implanter coupled to the FATIMA LaBr3(Ce) fast-timing array, and high-purity germanium detectors. Initial results are shown from the first experiments carried out with the setup. An overview of the setup and function is discussed, including technical advancements along the path.
|
|
Montanari, D. et al, & Gadea, A. (2011). Probing the nature of particle-core couplings in Ca-49 with gamma spectroscopy and heavy-ion transfer reactions. Phys. Lett. B, 697(4), 288–293.
Abstract: Neutron rich nuclei around Ca-48 have been measured with the CLARA-PRISMA setup, making use of Ca-48 on Ni-64 binary reactions, at 5.9 MeV/A. Angular distributions of gamma rays give evidence, in several transfer channels, for a large spin alignment (approximate to 70%) perpendicular to the reaction plane, making it possible to firmly establish spin and parities of the excited states. In the case of Ca-49, states arising from different types of particle-core couplings are, for the first time, unambiguously identified on basis of angular distribution, polarization and lifetime measurements. Shell model and particle-vibration coupling calculations are used to pin down the nature of the states. Evidence is found for the presence, in the same excitation energy region, of two types of coupled states, i.e. single particle coupled to either Ca-48 or Ca-50 simple configurations, and particle-vibration coupled states based on the 3- phonon of Ca-48.
|
|
Pajtler, M. V. et al, & Gadea, A. (2021). Excited states of Y-90,Y-92,Y-94 populated in Zr-90+Pb-208 multinucleon transfer reaction. Phys. Scr., 96(3), 035305–7pp.
Abstract: Multinucleon transfer reactions in Zr-90+Pb-208 have been studied via fragment-gamma coincidences, employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. An analysis on Y isotopes has been carried out incorporating spectroscopic as well as reaction mechanism aspects. New gamma transitions have been observed in Y-94, confirming the findings of recent studies where nuclei were produced via fission of uranium, and a comparison with near-by Y-90,Y-92 isotopes populated in the same reaction has been discussed. Experimental cross sections have been extracted and compared with the GRAZING calculations, showing a fair agreement along the neutron pick-up side. The results confirm how multinucleon transfer reactions are a suitable mechanism for the study of neutron-rich nuclei.
|
|
Rubio, B., Gelletly, W., Algora, A., Nacher, E., & Tain, J. L. (2017). Beta decay studies with total absorption spectroscopy and the Lucrecia spectrometer at ISOLDE. J. Phys. G, 44(8), 084004–25pp.
Abstract: Here we present the experimental activities carried out at ISOLDE with the total absorption spectrometer Lucrecia, a large 4 pi scintillator detector designed to absorb a full gamma cascade following beta decay. This spectrometer is designed to measure beta-feeding to excited states without the systematic error called Pandemonium. The set up allows the measurement of decays of very short half life. Experimental results from several campaigns, that focus on the determination of the shapes of beta-decaying nuclei by measuring their beta decay strength distributions as a function of excitation energy in the daughter nucleus, are presented.
|
|
Yaneva, A. et al, & Algora, A. (2024). The shape of the Tz =+1 nucleus 94Pd and the role of proton-neutron interactions on the structure of its excited states. Phys. Lett. B, 855, 138805–7pp.
Abstract: Reduced transition probabilities have been extracted between excited, yrast states in the N = Z + 2 nucleus Pd-94. The transitions of interest were observed following decays of the I-pi = 14(+), E-x = 2129-keV isomeric state, which was populated following the projectile fragmentation of a Xe-124 primary beam at the GSI Helmholtzzentrum fur Schwerionenforschung accelerator facility as part of FAIR Phase-0. Experimental information regarding the reduced E2 transition strengths for the decays of the yrast 8(+) and 6(+) states was determined following isomer-delayed E-gamma 1 – E-gamma 2 – Delta T-2,T-1 coincidence method, using the LaBr3(Ce)-based FATIMA fast-timing coincidence gamma-ray array, which allowed direct determination of lifetimes of states in Pd-94 using the Generalized Centroid Difference (GCD) method. The experimental value for the half-life of the yrast 8(+) state of 755(106) ps results in a reduced transition probability of B(E2:8(+)-> 6(+)) = 205(-25)(+34) e(2) fm(4), which enables a precise verification of shell-model calculations for this unique system, lying directly between the N = Z line and the N = 50 neutron shell closure. The determined B(E2) value provides an insight into the purity of (g(9/2))(n) configurations in competition with admixtures from excitations between the (lower) N = 3pf and (higher) N = 4gds orbitals for the first time. The results indicate weak collectivity expected for near-zero quadrupole deformation and an increasing importance of the T = 0 proton-neutron interaction at N = 48.
|
|
Zago, L. et al, Gadea, A., & Algora, A. (2022). High-spin states in Po-212 above the alpha-decaying (18(+)) isomer. Phys. Lett. B, 834, 137457–5pp.
Abstract: The nucleus Po-212 has been produced through the fragmentation of a U-238 primary beam at 1GeV/nucleon at GSI, separated with the FRagment Separator, FRS, and studied via isomer gamma-decay spectroscopy with the RISING setup. Two delayed previously unknown gamma rays have been observed. One has been attributed to the E3 decay of a 21(-) isomeric state feeding the alpha-emitting 45-s (18(+)) high-spin isomer. The other gamma-ray line has been assigned to the decay of a higher-lying 23(+) metastable state. These are the first observations of high-spin states above the Po-212 (18(+)) isomer, by virtue of the selectivity obtained via ion-by-ion identification of U-238 fragmentation products. Comparison with shell-model calculations points to shortfalls in the nuclear interactions involving high- jproton and neutron orbitals, to which the region around Z similar to 100 is sensitive.
|