|
Belanger, G., Bharucha, A., Fuks, B., Goudelis, A., Heisig, J., Jueid, A., et al. (2022). Leptoquark manoeuvres in the dark: a simultaneous solution of the dark matter problem and the R-D(*) anomalies. J. High Energy Phys., 02(2), 042–58pp.
Abstract: The measured branching fractions of B-mesons into leptonic final states derived by the LHCb, Belle and BaBar collaborations hint towards the breakdown of lepton flavour universality. In this work we take at face value the so-called R-D(()*()) observables that are defined as the ratios of neutral B-meson charged-current decays into a D-(*())-meson, a charged lepton and a neutrino final state in the tau and light lepton channels. A well-studied and simple solution to this charged current anomaly is to introduce a scalar leptoquark S-1 that couples to the second and third generation of fermions. We investigate how S-1 can also serve as a mediator between the Standard Model and a dark sector. We study this scenario in detail and estimate the constraints arising from collider searches for leptoquarks, collider searches for missing energy signals, direct detection experiments and the dark matter relic abundance. We stress that the production of a pair of leptoquarks that decays into different final states (i.e. the commonly called “mixed” channels) provides critical information for identifying the underlying dynamics, and we exemplify this by studying the t tau b nu and the resonant S-1 plus missing energy channels. We find that direct detection data provides non-negligible constraints on the leptoquark coupling to the dark sector, which in turn affects the relic abundance. We also show that the correct relic abundance can not only arise via standard freeze-out, but also through conversion-driven freeze-out. We illustrate the rich phenomenology of the model with a few selected benchmark points, providing a broad stroke of the interesting connection between lepton flavour universality violation and dark matter.
|
|
Bernard, V., Descotes-Genon, S., & Vale Silva, L. (2020). Constraining the gauge and scalar sectors of the doublet left-right symmetric model. J. High Energy Phys., 09(9), 088–64pp.
Abstract: We consider a left-right symmetric extension of the Standard Model where the spontaneous breakdown of the left-right symmetry is triggered by doublets. The electroweak rho parameter is protected from large corrections in this Doublet Left-Right Model (DLRM), contrary to the triplet case. This allows in principle for more diverse patterns of symmetry breaking. We consider several constraints on the gauge and scalar sectors of DLRM: the unitarity of scattering processes involving gauge bosons with longitudinal polarisations, the radiative corrections to the muon Delta r parameter and the electroweak precision observables measured at the Z pole and at low energies. Combining these constraints within the frequentist CKMfitter approach, we see that the fit pushes the scale of left-right symmetry breaking up to a few TeV, while favouring an electroweak symmetry breaking triggered not only by the SU (2)(L) x SU (2)(R) bi-doublet, which is the case most commonly considered in the literature, but also by the SU (2)(L) doublet.
|
|
Bjorkeroth, F., de Medeiros Varzielas, I., Lopez-Ibañez, M. L., Melis, A., & Vives, O. (2019). Leptogenesis in Delta(27) with a universal texture zero. J. High Energy Phys., 09(9), 050–24pp.
Abstract: We investigate the possibility of viable leptogenesis in an appealing Delta(27) model with a universal texture zero in the (1,1) entry. The model accommodates the mass spectrum, mixing and CP phases for both quarks and leptons and allows for grand unification. Flavoured Boltzmann equations for the lepton asymmetries are solved numerically, taking into account both N-1 and N-2 right-handed neutrino decays. The N-1-dominated scenario is successful and the most natural option for the model, with M-1 is an element of [10(9), 10(12)] GeV, and M-1/M-2 is an element of [0.002, 0.1], which constrains the parameter space of the underlying model and yields lower bounds on the respective Yukawa couplings. Viable leptogenesis is also possible in the N-2-dominated scenario, with the asymmetry in the electron flavour protected from N-1 washout by the texture zero. However, this occurs in a region of parameter space which has a stronger mass hierarchy M-1/M-2< 0.002, and M-2 relatively close to M-3, which is not a natural expectation of the Delta(27) model.
|
|
Blankenburg, G., & Morisi, S. (2012). Fermion masses and mixing with tri-bimaximal in SO(10) with type-I seesaw. J. High Energy Phys., 01(1), 016–18pp.
Abstract: We study a class of models for tri-bimaximal neutrino mixing in SO(10) grand unified SUSY framework. Neutrino masses arise from both type-I and type-II seesaw mechanisms. We use dimension five operators in order to not spoil tri-bimaximal mixing by means of type-I contribution in the neutrino sector. We show that it is possible to fit all fermion masses and mixings including also the recent T2K result as deviation from the tri-bimaximal.
|
|
Emmanuel-Costa, D., Simoes, C., & Tortola, M. (2013). The minimal adjoint-SU (5) x Z(4) GUT model. J. High Energy Phys., 10(10), 054–30pp.
Abstract: An extension of the adjoint SU (5) model with a flavour symmetry based on the Z(4) group is investigated. The Z(4) symmetry is introduced with the aim of leading the up-and down-quark mass matrices to the Nearest-Neighbour-Interaction form. As a consequence of the discrete symmetry embedded in the SU (5) gauge group, the charged lepton mass matrix also gets the same form. Within this model, light neutrinos get their masses through type-I, type-III and one-loop radiative seesaw mechanisms, implemented, respectively, via a singlet, a triplet and an octet from the adjoint fermionic 24 fields. It is demonstrated that the neutrino phenomenology forces the introduction of at least three 24 fermionic multiplets. The symmetry SU (5) x Z(4) allows only two viable zero textures for the effective neutrino mass matrix. It is showed that one texture is only compatible with normal hierarchy and the other with inverted hierarchy in the light neutrino mass spectrum. Finally, it is also demonstrated that Z(4) freezes out the possibility of proton decay through exchange of coloured Higgs triplets at tree-level.
|
|
Fileviez Perez, P., Murgui, C., & Plascencia, A. D. (2019). The QCD axion and unification. J. High Energy Phys., 11(11), 093–21pp.
Abstract: The QCD axion is one of the most appealing candidates for the dark matter in the Universe. In this article, we discuss the possibility to predict the axion mass in the context of a simple renormalizable grand unified theory where the Peccei-Quinn scale is determined by the unification scale. In this framework, the axion mass is predicted to be in the range ma, <^> (3-13) x 10-9 eV. We study the axion phenomenology and find that the ABRACADABRA and CASPEr-Electric experiments will be able to fully probe this mass window.
|
|
Fileviez Perez, P., Murgui, C., & Plascencia, A. D. (2020). Axion dark matter, proton decay and unification. J. High Energy Phys., 01(1), 091–18pp.
Abstract: We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be predicted with good precision in the range m(a) = (2-16) neV, and there is a strong correlation between the predictions for the axion mass and proton decay rates. In this context, we predict an upper bound for the proton decay channels with antineutrinos, tau(p -> K+(nu) over bar) less than or similar to 4 x 10(37) yr and tau(p -> pi(+)(nu) over bar) less than or similar to 2 x 10(36) yr. This theory can be considered as the minimal realistic grand unified theory with the DFSZ mechanism and it can be fully tested by proton decay and axion experiments.
|
|
Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., Wu, L., & Yang, J. M. (2020). LFV and (g-2) in non-universal SUSY models with light higgsinos. J. High Energy Phys., 05(5), 102–32pp.
Abstract: We consider a supersymmetric type-I seesaw framework with non-universal scalar masses at the GUT scale to explain the long-standing discrepancy of the anomalous magnetic moment of the muon. We find that it is difficult to accommodate the muon g-2 while keeping charged-lepton flavor violating processes under control for the conventional SO(10)-based relation between the up sector and neutrino sector. However, such tension can be relaxed by adding a Georgi-Jarlskog factor for the Yukawa matrices, which requires a non-trivial GUT-based model. In this model, we find that both observables are compatible for small mixings, CKM-like, in the neutrino Dirac Yukawa matrix.
|