|
Ardu, M., & Marcano, X. (2024). Completing the one-loop νSMEFT renormalization group evolution. J. High Energy Phys., 10(10), 212–23pp.
Abstract: In this work we consider the Standard Model Effective Field Theory extended with right-handed neutrinos, the nu SMEFT, and calculate the full set of one-loop anomalous dimensions that are proportional to Yukawa couplings. These contributions are particularly relevant when symmetry-protected low scale seesaw models are embeded in the SMEFT, since large neutrino Yukawa couplings are expected. By combining our results with the already available gauge anomalous dimensions, we provide the complete set of one-loop renormalization group evolution equations for the dimension six nu SMEFT. As a possible phenomenological implication of our results, we discuss the sensitivity of lepton flavor-violating observables to nu SMEFT operators, focusing on the more sensitive μ-> e transitions.
|
|
Bartl, A., Eberl, H., Herrmann, B., Hidaka, K., Majerotto, W., & Porod, W. (2011). Impact of squark generation mixing on the search for squarks decaying into fermions at LHC. Phys. Lett. B, 698(5), 380–388.
Abstract: We study the effect of squark generation mixing on squark production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM). We show that the effect can be very large despite the very strong constraints on quark-flavour violation (QFV) from experimental data on B mesons. We find that the two lightest up-type squarks (u) over bar (1.2) can have large branching ratios for the decays into c (chi) over bar (0)(1) and t (chi) over bar (0)(1) at the same time due to squark generation mixing, leading to QFV signals 'pp -> c (t) over bar (t (c) over bar) + missing-E-T + X' with a significant rate. The observation of this remarkable signature would provide a powerful test of supersymmetric QFV at LHC. This could have a significant impact on the search for squarks and the determination of the underlying MSSM parameters.
|
|
Beltran, R., Bolton, P. D., Deppisch, F. F., Hati, C., & Hirsch, M. (2024). Probing heavy neutrino magnetic moments at the LHC using long-lived particle searches. J. High Energy Phys., 07(7), 153–44pp.
Abstract: We explore long-lived particle (LLP) searches using non-pointing photons at the LHC as a probe for sterile-to-sterile and active-to-sterile transition magnetic dipole moments of sterile neutrinos. We consider heavy sterile neutrinos with masses ranging from a few GeV to several hundreds of GeV. We discuss transition magnetic dipole moments using the Standard Model effective field theory and low-energy effective field theory extended by sterile neutrinos (NRSMEFT and NRLEFT) and also provide a simplified UV-complete model example. LLP searches at the LHC using non-pointing photons will probe sterile-to-sterile dipole moments two orders of magnitude below the current best constraints from LEP, while an unprecedented sensitivity to sterile neutrino mass of about 700 GeV is expected for active-to-sterile dipole moments. For the UV model example with one-loop transition magnetic moments, the searches for charged lepton flavour violating processes in synergy with LLP searches at the LHC can probe new physics at several TeV mass scales and provide valuable insights into the lepton flavour structure of new physics couplings.
|
|
Botella, F. J., Branco, G. C., & Rebelo, M. N. (2010). Minimal flavour violation and multi-Higgs models. Phys. Lett. B, 687(2-3), 194–200.
Abstract: We propose an extension of the hypothesis of Minimal Flavour Violation (MFV) to general multi-Higgs models without the assumption of Natural Flavour Conservation (NFC) in the Higgs sector. We study in detail under what conditions the neutral Higgs couplings are only functions of V-CKM and propose a MFV expansion for the neutral Higgs couplings to fermions.
|
|
Carcamo Hernandez, A. E., Vishnudath, K. N., & Valle, J. W. F. (2023). Linear seesaw mechanism from dark sector. J. High Energy Phys., 09(9), 046–18pp.
Abstract: We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.
|
|
Centelles Chulia, S., Herrero-Brocal, A., & Vicente, A. (2024). The Type-I Seesaw family. J. High Energy Phys., 07(7), 060–35pp.
Abstract: We provide a comprehensive analysis of the Type-I Seesaw family of neutrino mass models, including the conventional type-I seesaw and its low-scale variants, namely the linear and inverse seesaws. We establish that all these models essentially correspond to a particular form of the type-I seesaw in the context of explicit lepton number violation. We then focus into the more interesting scenario of spontaneous lepton number violation, systematically categorizing all inequivalent minimal models. Furthermore, we identify and flesh out specific models that feature a rich majoron phenomenology and discuss some scenarios which, despite having heavy mediators and being invisible in processes such as μ-> e gamma, predict sizable rates for decays including the majoron in the final state.
|
|
Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., & Yang, J. M. (2022). Anomaly-free ALP from non-Abelian flavor symmetry. J. High Energy Phys., 08(8), 306–21pp.
Abstract: Motivated by the XENON1T excess in electron-recoil measurements, we investigate the prospects of probing axion-like particles (ALP) in lepton flavor violation experiments. In particular, we identify such ALP as a pseudo-Goldstone from the spontaneous breaking of the flavor symmetries that explain the mixing structure of the Standard Model leptons. We present the case of the flavor symmetries being a non-Abelian U(2) and the ALP originating from its U(1) subgroup, which is anomaly-free with the Standard Model group. We build two explicit realistic examples that reproduce leptonic masses and mixings and show that the ALP which is consistent with XENON1T anomaly could be probed by the proposed LFV experiments.
|
|
Herrero-Brocal, A., & Vicente, A. (2024). The majoron coupling to charged leptons. J. High Energy Phys., 01(1), 078–33pp.
Abstract: The particle spectrum of all Majorana neutrino mass models with spontaneous violation of global lepton number include a Goldstone boson, the so-called majoron. The presence of this massless pseudoscalar changes the phenomenology dramatically. In this work we derive general analytical expressions for the 1-loop coupling of the majoron to charged leptons. These can be applied to any model featuring a majoron that have a clear hierarchy of energy scales, required for an expansion in powers of the low-energy scale to be valid. We show how to use our general results by applying them to some example models, finding full agreement with previous results in several popular scenarios and deriving novel ones in other setups.
|
|
Papoulias, D. K., & Kosmas, T. S. (2015). Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions. Phys. Lett. B, 747, 454–459.
Abstract: Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity chi(2)-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector and tensor exotic interactions for the case of reactor neutrinos, studied with TEXONO and GEMMA neutrino detectors.
|