|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fernandez Martinez, P., et al. (2016). Measurement of the CP-violating phase phi(s) and the B-s(0) meson decay width difference with B-s(0) -> J/psi phi decays in ATLAS. J. High Energy Phys., 08(8), 147–45pp.
Abstract: A measurement of the B-s(0) decay parameters in the B-s(0) -> J/psi/phi channel using an integrated luminosity of 14.3 fb(-1) collected by the ATLAS detector from 8TeV pp collisions at the LHC is presented. The measured parameters include the CP-violating phase phi(s), the decay width Gamma(s) and the width di ff erence between the mass eigenstates Delta Gamma(s). The values measured for the physical parameters are statistically combined with those from 4.9 fb-1 of 7TeV data, leading to the following: phi(s) = -0.090 +/- 0.078 (stat.) +/- 0.041 (syst.) rad Delta Gamma s = 0.085 +/- 0.011 (stat.) +/- 0.007 (syst.) ps(-1) Gamma(s) = 0.675 +/- 0.003 (stat.) +/- 0.003 (syst:) ps(-1). In the analysis the parameter Delta Gamma(s) is constrained to be positive. Results for phi(s) and Delta Gamma(s) are also presented as 68% and 95% likelihood contours in the phi(s)-Delta Gamma(s) plane. Also measured in this decay channel are the transversity amplitudes and corresponding strong phases. All measurements are in agreement with the Standard Model predictions.
|
|
|
Calibbi, L., Perez, J. J., Masiero, A., Park, J. H., Porod, W., & Vives, O. (2010). FCNC and CP violation observables in an SU(3)-flavoured MSSM. Nucl. Phys. B, 831(1-2), 26–71.
Abstract: A non-Abelian flavour symmetry in a minimal supersymmetric standard model can explain the flavour structures in the Yukawa couplings and simultaneously solve the SUSY flavour problem. Similarly the SUSY CP problem can be solved if CP is spontaneously broken in the flavour sector. In this work, we present an explicit example of these statements with an SU(3) flavour symmetry and spontaneous CP violation. In addition, we show that it is still possible to find some significant deviation from the SM expectations as far as FCNC and CP violation are concerned. We find that large contributions can be expected in lepton flavour violating decays, as μ-> e gamma and tau -> μgamma, electric dipole moments, d(e) and d(n) and kaon CP violating processes as epsilon(K). We also show that without further modifications, it is unlikely for these models to solve the Phi(Bs) anomaly at low-moderate tan beta. Thus, these flavoured MSSM realizations are phenomenologically sensitive to the experimental searches in the realm of flavor and CP violation physics.
|
|
|
Double Chooz collaboration(Abe, Y. et al), & Novella, P. (2016). Measurement of theta(13) in Double Chooz using neutron captures on hydrogen with novel background rejection techniques. J. High Energy Phys., 01(1), 163–29pp.
Abstract: The Double Chooz collaboration presents a measurement of the neutrino mixing angle theta(13) using reactor (nu) over bar (e) observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respect to our previous publication by a multi-variate analysis. These improvements demonstrate the capability of precise measurement of reactor (nu) over bar (e) without gadolinium loading. Spectral distortions from the (nu) over bar (e) reactor flux predictions previously reported with the neutron capture on gadolinium events are confirmed in the independent data sample presented here. A value of sin(2) 2 theta(13) = 0.095(0.039)(+0.039)(stat+syst) is obtained from a fit to the observed event rate as a function of the reactor power, a method insensitive to the energy spectrum shape. A simultaneous fit of the hydrogen capture events and of the gadolinium capture events yields a measurement of sin(2) 2 theta(13) = 0.088 +/- 0.033(stat+syst).
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Amplitude analysis of B-s(0) -> K-S(0) K-+/-pi(-/+) decays. J. High Energy Phys., 06(6), 114–28pp.
Abstract: The first untagged decay-time-integrated amplitude analysis of B 0 s ! K 0 S K decays is performed using a sample corresponding to 3: 0 fb of pp collision data recorded with the LHCb detector during 2011 and 2012. The data are described with an amplitude model that contains contributions from the intermediate resonances K 9892) 0;+, K 2 91430) 0;+ and K 0 91430) 0;+, and their charge conjugates. Measurements of the branching fractions of the decay modes B 0 s ! K 9892) K and B 0 s ! K 9892) 0 K 0 are in agreement with, and more precise than, previous results. The decays B 0 s ! K 0 91430) K and B 0 s ! K 0 91430) 0 K 0 are observed for the fi rst time, each with signi fi cance over 10 standard deviations.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of CP observables in the process B-0 -> DK*0 with two- and four-body D decays. J. High Energy Phys., 08(8), 041–30pp.
Abstract: Measurements of CP observables in B-0 -> DK0 decays are presented, where D represents a superposition of D-0 and D0 states. The D meson is reconstructed in the two-body final states K+pi(-), pi K-+(-), K+K- and pi(+)pi(-), and, for the first time, in the fourbody final states K+pi(-)pi(+)pi(-), pi K-+(-)pi(+)pi(-) and pi(+)pi(-)pi(+)pi(-). The analysis uses a sample of neutral B mesons produced in proton-proton collisions, corresponding to an integrated luminosity of 1.0, 2.0 and 1.8 fb(-1) collected with the LHCb detector at centre-of-mass energies of ,8 and 13 TeV, respectively. First observations of the decays B-0 -> D(pi K-+(-))K-0 and B-0 -> D(pi(+)pi(-)pi(+)pi(-))K-0 are obtained. The measured observables are interpreted in terms of the CP -violating weak phase gamma.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Observation of the doubly Cabibbo-suppressed decay Xi(+)(c) -> p phi. J. High Energy Phys., 04(4), 084–18pp.
Abstract: The doubly Cabibbo- suppressed decay Xi(+)(c) -> p phi with ! K+K is observed for the fi rst time, with a statistical signi fi cance of more than fi fteen standard deviations. The data sample used in this analysis corresponds to an integrated luminosity of 2 fb recorded with the LHCb detector in pp collisions at a centre- of- mass energy of 8TeV. The ratio of branching fractions between the decay + c ! p and the singly Cabibbo- suppressed decay + c ! pK is measured to be B (Xi(+)(c) -> p phi) B (Xi(+)(c) -> p phi) = (19 : 8 0 : 7 0 : 9 0 : 2) 10 where the fi rst uncertainty is statistical, the second systematic and the third due to the knowledge of the Xi(+)(c) -> pK(+)pi(+) branching fraction.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Search for CP violation through an amplitude analysis of D-0 K+K-+- decays. J. High Energy Phys., 02(2), 126–34pp.
Abstract: A search for CP violation in the Cabibbo-suppressed D-0 K+K-+- decay mode is performed using an amplitude analysis. The measurement uses a sample of pp collisions recorded by the LHCb experiment during 2011 and 2012, corresponding to an integrated luminosity of 3.0 fb(-1). The D-0 mesons are reconstructed from semileptonic b-hadron decays into D0-X final states. The selected sample contains more than 160 000 signal decays, allowing the most precise amplitude modelling of this D-0 decay to date. The obtained amplitude model is used to perform the search for CP violation. The result is compatible with CP symmetry, with a sensitivity ranging from 1% to 15% depending on the amplitude considered.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of branching fraction ratios for B+ -> D*+D-K+, B+ -> D*-D+K+, and B-0 -> (D*-DK+)-K-0 decays. J. High Energy Phys., 12(12), 139–22pp.
Abstract: A measurement of four branching-fraction ratios for three-body decays of B mesons involving two open-charm hadrons in the final state is presented. Run 1 and Run 2 pp collision data are used, recorded by the LHCb experiment at centre-of-mass energies 7, 8, and 13 TeV and corresponding to an integrated luminosity of 9 fb(-1). The measured branching-fraction ratios are<disp-formula id=“Equa”><mml:mtable displaystyle=“true”><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B+-> D+D-K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B+-> D<overbar></mml:mover>0D0K+</mml:mfenced></mml:mfrac>=0.5170.0150.013 +/- 0.011,</mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B+-> D-D+K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B+-> D<overbar></mml:mover>0D0K+</mml:mfenced></mml:mfrac>=0.577 +/- 0.016 +/- 0.013 +/- 0.013,</mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mtable><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B0 -> D-D0K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B0 -> D-D0K+</mml:mfenced></mml:mfrac>=1.754 +/- 0.028 +/- 0.016 +/- 0.035,</mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B+-> D+D-K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B+-> D-D+K+</mml:mfenced></mml:mfrac>=0.907 +/- 0.033<mml:mo>+/- 0.014<mml:mo>,</mml:mtd></mml:mtr></mml:mtable></mml:mtd></mml:mtr></mml:mtable><graphic position=“anchor” xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:href=“13130202014428ArticleEqua.gif”></graphic></disp-formula><p id=“Par2”>where the first of the uncertainties is statistical, the second systematic, and the third is due to the uncertainties on the D-meson branching fractions. These are the most accurate measurements of these ratios to date.<fig id=“Figa” position=“anchor”><graphic position=“anchor” specific-use=“HTML” mime-subtype=“JPEG” xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:href=“MediaObjects/13130202014428FigaHTML.jpg” id=“MO1”></graphic
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of CP observables in B+/- -> DK+/- and B+/- -> D pi+/- with D -> KS0 K+/- pi-/+ decays. J. High Energy Phys., 06(6), 058–25pp.
Abstract: Measurements of CP observables in B-+/- -> DK +/- and B-+/- -> D pi (+/-) decays are presented, where D represents a superposition of D-0 and D<overbar>0 states. The D meson is reconstructed in the three-body final states KS0K +/- pi -/+ and KS0K -/+ pi +/-. The analysis uses samples of B mesons produced in proton-proton collisions, corresponding to an integrated luminosity of 1.0, 2.0, and 6.0 fb(-1) collected with the LHCb detector at centre-of-mass energies of <mml:msqrt>s</mml:msqrt> = 7, 8, and 13 TeV, respectively. These measurements are the most precise to date, and provide important input for the determination of the CKM angle gamma.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of CP violation in B-0 -> (DD -/+)-D-*+/- decays. J. High Energy Phys., 03(3), 147–28pp.
Abstract: The decay-time-dependent CP asymmetry in B-0 -> (DD -/+)-D-*+/- decays is mea- sured using a data set corresponding to an integrated luminosity of 9 fb(-1) recorded by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The CP parameters are measured asSD*D=-0.861 +/- 0.077 +/- 0.019,Delta SD*D=0.019 +/- 0.075 +/- 0.012,CD*D=-0.059 +/- 0.092 +/- 0.020,Delta CD*D=-0.031 +/- 0.092 +/- 0.016,AD*D=0.008 +/- 0.014 +/- 0.006. The analysis provides the most precise single measurement of CP violation in this decay channel to date. All parameters are consistent with their current world average values.
|
|