|
AGATA Collaboration(Lalovic, N. et al), Gadea, A., & Domingo-Pardo, C. (2018). Study of isomeric states in Pb-198, Pb-200, Pb-202, Pb-206 and Hg-206 populated in fragmentation reactions. J. Phys. G, 45(3), 035105–27pp.
Abstract: Isomeric states in isotopes in the vicinity of doubly-magic Pb-208 were populated following reactions of a relativistic Pb-208 primary beam impinging on a Be-9 fragmentation target. Secondary beams of Pb-198,Pb-200,Pb-202,Pb-206 and Hg-206 were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed gamma rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei Pb-206/Hg-206 was found to differ from the population of multi neutron-hole isomeric states in Pb-198,Pb-200,Pb-202.
|
|
|
Wimmer, K. et al, Algora, A., & Rubio, B. (2019). Discovery of Br-68 in secondary reactions of radioactive beams. Phys. Lett. B, 795, 266–270.
Abstract: The proton-rich isotope Br-68 was discovered in secondary fragmentation reactions of fast radioactive beams. Proton-rich secondary beams of (70,71,72) Kr and Br-70, produced at the RIKEN Nishina Center and identified by the BigRIPS fragment separator, impinged on a secondary Be-9 target. Unambiguous particle identification behind the secondary target was achieved with the ZeroDegree spectrometer. Based on the expected direct production cross sections from neighboring isotopes, the lifetime of the ground or long-lived isomeric state of Br-68 was estimated. The results suggest that secondary fragmentation reactions, where relatively few nucleons are removed from the projectile, offer an alternative way to search for new isotopes, as these reactions populate preferentially low-lying states.
|
|