|
Albiol, F., Corbi, A., & Albiol, A. (2017). Evaluation of modern camera calibration techniques for conventional diagnostic X-ray imaging settings. Radiol. Phys. Technol., 10(1), 68–81.
Abstract: We explore three different alternatives for obtaining intrinsic and extrinsic parameters in conventional diagnostic X-ray frameworks: the direct linear transform (DLT), the Zhang method, and the Tsai approach. We analyze and describe the computational, operational, and mathematical background differences for these algorithms when they are applied to ordinary radiograph acquisition. For our study, we developed an initial 3D calibration frame with tin cross-shaped fiducials at specific locations. The three studied methods enable the derivation of projection matrices from 3D to 2D point correlations. We propose a set of metrics to compare the efficiency of each technique. One of these metrics consists of the calculation of the detector pixel density, which can be also included as part of the quality control sequence in general X-ray settings. The results show a clear superiority of the DLT approach, both in accuracy and operational suitability. We paid special attention to the Zhang calibration method. Although this technique has been extensively implemented in the field of computer vision, it has rarely been tested in depth in common radiograph production scenarios. Zhang's approach can operate on much simpler and more affordable 2D calibration frames, which were also tested in our research. We experimentally confirm that even three or four plane-image correspondences achieve accurate focal lengths.
|
|
|
Andricek, L. et al, Lacasta, C., Marinas, C., & Vos, M. (2011). Intrinsic resolutions of DEPFET detector prototypes measured at beam tests. Nucl. Instrum. Methods Phys. Res. A, 638(1), 24–32.
Abstract: The paper is based on the data of the 2009 DEPFET beam test at CERN SPS. The beam test used beams of pions and electrons with energies between 40 and 120 GeV, and the sensors tested were prototypes with thickness of 450 μm and pixel pitch between 20 and 32 μm. Intrinsic resolutions of the detectors are calculated by disentangling the contributions of measurement errors and multiple scattering in tracking residuals. Properties of the intrinsic resolution estimates and factors that influence them are discussed. For the DEPFET detectors in the beam test, the calculation yields intrinsic resolutions of approximate to 1 μm, with a typical accuracy of 0.1 μm. Bias scan, angle scan, and energy scan are used as example studies to show that the intrinsic resolutions are a useful tool in studies of detector properties. With sufficiently precise telescopes, detailed resolution maps can be constructed and used to study and optimize detector performance.
|
|