|
Ahlburg, P. et al, & Marinas, C. (2020). EUDAQ – a data acquisition software framework for common beam telescopes. J. Instrum., 15(1), P01038–30pp.
Abstract: EUDAQ is a generic data acquisition software developed for use in conjunction with common beam telescopes at charged particle beam lines. Providing high-precision reference tracks for performance studies of new sensors, beam telescopes are essential for the research and development towards future detectors for high-energy physics. As beam time is a highly limited resource, EUDAQ has been designed with reliability and ease-of-use in mind. It enables flexible integration of different independent devices under test via their specific data acquisition systems into a top-level framework. EUDAQ controls all components globally, handles the data flow centrally and synchronises and records the data streams. Over the past decade, EUDAQ has been deployed as part of a wide range of successful test beam campaigns and detector development applications.
|
|
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Castillo, F. L., Castillo Gimenez, V., et al. (2020). Operation of the ATLAS trigger system in Run 2. J. Instrum., 15(10), P10004–59pp.
Abstract: The ATLAS experiment at the Large Hadron Collider employs a two-level trigger system to record data at an average rate of 1 kHz from physics collisions, starting from an initial bunch crossing rate of 40 MHz. During the LHC Run 2 (2015-2018), the ATLAS trigger system operated successfully with excellent performance and flexibility by adapting to the various run conditions encountered and has been vital for the ATLAS Run-2 physics programme For proton-proton running, approximately 1500 individual event selections were included in a trigger menu which specified the physics signatures and selection algorithms used for the data-taking, and the allocated event rate and bandwidth. The trigger menu must reflect the physics goals for a given data collection period, taking into account the instantaneous luminosity of the LHC and limitations from the ATLAS detector readout, online processing farm, and offline storage. This document discusses the operation of the ATLAS trigger system during the nominal proton-proton data collection in Run 2 with examples of special data-taking runs. Aspects of software validation, evolution of the trigger selection algorithms during Run 2, monitoring of the trigger system and data quality as well as trigger configuration are presented.
|
|
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Castillo, F. L., Castillo Gimenez, V., et al. (2020). Performance of the ATLAS muon triggers in Run 2. J. Instrum., 15(9), P09015–57pp.
Abstract: The performance of the ATLAS muon trigger system is evaluated with proton-proton (pp) and heavy-ion (HI) collision data collected in Run 2 during 2015-2018 at the Large Hadron Collider. It is primarily evaluated using events containing a pair of muons from the decay of Z bosons to cover the intermediate momentum range between 26 GeV and 100 GeV. Overall, the efficiency of the single-muon triggers is about 68% in the barrel region and 85% in the endcap region. The p(T) range for efficiency determination is extended by using muons from decays of J/psi mesons, W bosons, and top quarks. The performance in HI collision data is measured and shows good agreement with the results obtained in pp collisions. The muon trigger shows uniform and stable performance in good agreement with the prediction of a detailed simulation. Dedicated multi-muon triggers with kinematic selections provide the backbone to beauty, quarkonia, and low-mass physics studies. The design, evolution and performance of these triggers are discussed in detail.
|
|
|
Carrio, F., Kim, H. Y., Moreno, P., Reed, R., Sandrock, C., Schettino, V., et al. (2014). Design of an FPGA-based embedded system for the ATLAS Tile Calorimeter front-end electronics test-bench. J. Instrum., 9, C03023–12pp.
Abstract: The portable test-bench for the certification of the ATLAS tile hadronic calorimeter front-end electronics has been redesigned for the present Long Shutdown (LS1) of LHC, improving its portability and expanding its functionalities. This paper presents a new test-bench based on a Xilinx Virtex-5 FPGA that implements an embedded system using a PowerPC 440 microprocessor hard core and custom IP cores. A light Linux version runs on the PowerPC microprocessor and handles the IP cores which implement the different functionalities needed to perform the desired tests such as TTCvi emulation, G-Link decoding, ADC control and data reception.
|
|
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Mazorra de Cos, J., Oyanguren, A., et al. (2024). The LHCb Upgrade I. J. Instrum., 19(5), P05065–213pp.
Abstract: The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all -software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all -software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software.
|
|