|
Ahyoune, S. et al, & Gimeno, B. (2025). RADES axion search results with a high-temperature superconducting cavity in an 11.7 T magnet. J. High Energy Phys., 04(4), 113–23pp.
Abstract: We describe the results of a haloscope axion search performed with an 11.7 T dipole magnet at CERN. The search used a custom-made radio-frequency cavity coated with high-temperature superconducting tape. A set of 27 h of data at a resonant frequency of around 8.84 GHz was analysed. In the range of axion mass 36.5676 μeV to 36.5699 μeV, corresponding to a width of 554 kHz, no signal excess hinting at an axion-like particle was found. Correspondingly, in this mass range, a limit on the axion to photon coupling-strength was set in the range between ga gamma greater than or similar to 6.3 x 10-13 GeV-1 and ga gamma greater than or similar to 1.59 x 10-13 GeV-1 with a 95% confidence level.
|
|
|
Alvarez Melcon, A. et al, & Gimeno, B. (2021). First results of the CAST-RADES haloscope search for axions at 34.67 μeV. J. High Energy Phys., 10(10), 075–16pp.
Abstract: We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 μeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of g(a gamma) greater than or similar to 4 x 10(-13) GeV-1 over a mass range of 34.6738 μeV < m(a)< 34.6771 μeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 μeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.
|
|
|
Melcon, A. A., Cuendis, S. A., Cogollos, C., Diaz-Morcillo, A., Dobrich, B., Gallego, J. D., et al. (2020). Scalable haloscopes for axion dark matter detection in the 30 μeV range with RADES. J. High Energy Phys., 07(7), 084–28pp.
Abstract: RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30 μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the performance of the chosen design. We also point towards the applicability of this formalism to optimise the MADMAX dielectric haloscopes.
|
|
|
NEXT Collaboration(Adams, C. et al), Carcel, S., Carrion, J. V., Diaz, J., Felkai, R., Lopez-March, N., et al. (2021). Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches. J. High Energy Phys., 08(8), 164–24pp.
Abstract: The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0 nu beta beta) decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0 nu beta beta decay better than 10(27) years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.
|
|
|
NEXT Collaboration(Contreras, T. et al), Ayet, S., Carcel, S., Kellerer, F., Lopez-March, N., Martin-Albo, J., et al. (2024). Measurement of energy resolution with the NEXT-White silicon photomultipliers. J. High Energy Phys., 09(9), 112–23pp.
Abstract: The NEXT-White detector, a high-pressure gaseous xenon time projection chamber, demonstrated the excellence of this technology for future neutrinoless double beta decay searches using photomultiplier tubes (PMTs) to measure energy and silicon photomultipliers (SiPMs) to extract topology information. This analysis uses Kr-83m data from the NEXT-White detector to measure and understand the energy resolution that can be obtained with the SiPMs, rather than with PMTs. The energy resolution obtained of (10.9 0.6)%, full-width half-maximum, is slightly larger than predicted based on the photon statistics resulting from very low light detection coverage of the SiPM plane in the NEXT-White detector. The difference in the predicted and measured resolution is attributed to poor corrections, which are expected to be improved with larger statistics. Furthermore, the noise of the SiPMs is shown to not be a dominant factor in the energy resolution and may be negligible when noise subtraction is applied appropriately, for high-energy events or larger SiPM coverage detectors. These results, which are extrapolated to estimate the response of large coverage SiPM planes, are promising for the development of future, SiPM-only, readout planes that can offer imaging and achieve similar energy resolution to that previously demonstrated with PMTs.
|
|