|
Andricek, L. et al, Lacasta, C., Marinas, C., & Vos, M. (2011). Intrinsic resolutions of DEPFET detector prototypes measured at beam tests. Nucl. Instrum. Methods Phys. Res. A, 638(1), 24–32.
Abstract: The paper is based on the data of the 2009 DEPFET beam test at CERN SPS. The beam test used beams of pions and electrons with energies between 40 and 120 GeV, and the sensors tested were prototypes with thickness of 450 μm and pixel pitch between 20 and 32 μm. Intrinsic resolutions of the detectors are calculated by disentangling the contributions of measurement errors and multiple scattering in tracking residuals. Properties of the intrinsic resolution estimates and factors that influence them are discussed. For the DEPFET detectors in the beam test, the calculation yields intrinsic resolutions of approximate to 1 μm, with a typical accuracy of 0.1 μm. Bias scan, angle scan, and energy scan are used as example studies to show that the intrinsic resolutions are a useful tool in studies of detector properties. With sufficiently precise telescopes, detailed resolution maps can be constructed and used to study and optimize detector performance.
|
|
Belle-II DEPFET and PXD Collaboration(Ye, H. et al), Boronat, M., Esperante, D., Fuster, J., Gomis, P., Lacasta, C., et al. (2021). Commissioning and performance of the Belle II pixel detector. Nucl. Instrum. Methods Phys. Res. A, 987, 164875–5pp.
Abstract: The Belle II experiment at the SuperKEKB energy-asymmetric e(+)e(-) collider has completed a series of substantial upgrades and started collecting data in 2019. The experiment is expected to accumulate a data set of 50 ab(-1) to explore new physics beyond the Standard Model at the intensity frontier. The pixel detector (PXD) of Belle II plays a key role in vertex determination. It has been developed using the DEpleted P-channel Field Effect Transistor (DEPFET) technology, which combines low power consumption in the active pixel area and low intrinsic noise with a very small material budget. In this paper, commissioning and performance of the PXD measured with first collision data are presented.
|
|
Belle-II DEPFET and PXD Collaborations(Ahlburg, P. et al), & Marinas, C. (2024). The new and complete Belle II DEPFET pixel detector: Commissioning and previous operational experience. Nucl. Instrum. Methods Phys. Res. A, 1068, 169763–6pp.
Abstract: The Belle II experiment at the SuperKEKB collider in Tsukuba, Japan, has collected e+e- + e – collision data between 2019 and 2022. After reaching a record-breaking instantaneous luminosity of 4.71x1034 . 71x10 34 cm -2 s -1 and recording a dataset corresponding to 424 fb -1 , it completed its first planned long shutdown phase in December 2023. Aside from upgrades of the collider and detector maintenance, the shutdown was used for the installation of the two-layer Pixel VerteX Detector (PXD). As the innermost sub-detector, multiple scattering effects need to be reduced. PXD utilizes the Depleted P-channel Field Effect Transistor (DEPFET) technology, allowing for a material budget of 0.21% X0 0 per layer. Each of the tracker's 40 modules consists of an array of 250x768 pixels with a pitch ranging from 50 μmx 55 μm for the inner to 85 μmx 55 μm for the outer layer yielding high gain and high signal-to-noise ratio while retaining about 99% hit efficiency. This article discusses the experience of the 4-year operation of the previous single-layer PXD in harsh background conditions as well as commissioning and testing of the fully-populated PXD2 during Long Shutdown 1.
|
|
Belle-II DEPFET and PXD Collaborations(Wang, B. et al), & Marinas, C. (2022). Operational experience of the Belle II pixel detector. Nucl. Instrum. Methods Phys. Res. A, 1032, 166631–7pp.
Abstract: The Belle II experiment at the SuperKEKB accelerator has started its physics data taking with the full detector setup in March 2019. It aims to collect 40 times more e+e- collision data compared with its predecessor Belle experiment. The Belle II pixel detector (PXD) is based on the Depleted P-channel Field Effect Transistor (DEPFET) technology. The PXD plays an important role in the tracking and vertexing of the Belle II detector. Its two layers are arranged at radii of 14 mm and 22 mm around the interaction point. The sensors are thinned down to 75 μm to minimize multiple scattering, and each module has interconnects and ASICs integrated on the sensor with silicon frames for mechanical support. PXD showed good performance during data taking. It also faces several operational challenges due to the high background level from the SuperKEKB accelerator, such as the damage from beam loss events, the drift in the HV working point due to radiation effect, and the impact of the high background.
|
|
DEPFET collaboration(Alonso, O. et al), Boronat, M., Esperante-Pereira, D., Fuster, J., Garcia, I. G., Lacasta, C., et al. (2013). DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider. IEEE Trans. Nucl. Sci., 60(2), 1457–1465.
Abstract: The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 μm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling, and services. In this paper, the status of the DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e(+)e(-) collider.
|
|
Marinas, C., & Vos, M. (2011). The Belle-II DEPFET pixel detector: A step forward in vertexing in the superKEKB flavour factory. Nucl. Instrum. Methods Phys. Res. A, 650(1), 59–63.
Abstract: An upgrade of the successful asymmetric e(+)e(-) collider in KEK (Tsukuba, Japan) is foreseen by the fall of 2013. This new Super Flavor Factory will deliver an increased instantaneous luminosity of up to L = 8 x 10(35) cm(-2) s(-1), 40 times larger than the current KEKB machine. To exploit these new conditions and provide high precision measurements of the decay vertex of the B meson systems, a new silicon vertex detector will be operated in Belle. This new detector will consist of two layers of DEPFET Active Pixel Sensors as close as possible to the interaction point. DEPFET is a field effect transistor, with an additional deep implant underneath the channel's gate, integrated on a completely depleted bulk. This technology offers detection and an in-pixel amplification stage, while keeping low the power consumption. Under these conditions, thin sensors with small pixel size and low intrinsic noise are possible. In this article, an overview of the full system will be described, including the sensor, the front-end electronics and both the mechanical and thermal proposed solutions as well as the expected performance.
|
|
Schreeck, H., Paschen, B., Wieduwilt, P., Ahlburg, P., Andricek, L., Dingfelder, J., et al. (2020). Effects of gamma irradiation on DEPFET pixel sensors for the Belle II experiment. Nucl. Instrum. Methods Phys. Res. A, 959, 163522–9pp.
Abstract: For the Belle II experiment at KEK (Tsukuba, Japan) the KEKB accelerator was upgraded to deliver a 40 times larger instantaneous luminosity than before, which requires an increased radiation hardness of the detector components. As the innermost part of the Belle II detector, the pixel detector (PXD), based on DEPFET (DEpleted P-channel Field Effect Transistor) technology, is most exposed to radiation from the accelerator. An irradiation campaign was performed to verify that the PXD can cope with the expected amount of radiation. We present the results of this measurement campaign in which an X-ray machine was used to irradiate a single PXD half-ladder to a total dose of 266 kGy. The half-ladder is from the same batch as the half-ladders used for Belle II. According to simulations, the total accumulated dose corresponds to 7-10 years of Belle II operation. While individual components have been irradiated before, this campaign is the first full system irradiation. We discuss the effects on the DEPFET sensors, as well as the performance of the front-end electronics. In addition, we present efficiency studies of the half-ladder from beam tests performed before and after the irradiation.
|
|
Wieduwilt, P., Paschen, B., Schreeck, H., Schwenker, B., Soltau, J., Ahlburg, P., et al. (2021). Performance of production modules of the Belle II pixel detector in a high-energy particle beam. Nucl. Instrum. Methods Phys. Res. A, 991, 164978–15pp.
Abstract: The Belle II experiment at the Super B factory SuperKEKB, an asymmetric e(+) e(-) collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the gamma (4S) resonance of m(gamma(4S)) = 10.58 GeV. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only 75 μm. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II.
|