|
|
Antonova, M., Capo, J., Cervera, A., Fernandez, P., Garcia-Peris, M. A., & Pons, X. (2026). Millikelvin-precision temperature sensing for advanced cryogenic detectors. Nucl. Instrum. Methods Phys. Res. A, 1082, 171062–13pp.
Abstract: Precise temperature monitoring-to the level of a few millikelvin-is essential for the operation of large-scale cryostats requiring a recirculation system. In particular, the performance of Liquid Argon Time Projection Chambers-such as those planned for the DUNE experiment-strongly relies on proper argon purification and mixing, which can be characterized by a sufficiently dense grid of high-precision temperature probes. In this article, we describe the key components of a novel temperature monitoring system developed for a prototype of the DUNE experiment. In particular, a new technique for the cross-calibration of Resistance Temperature Detectors in cryogenic liquids will be presented in detail. This calibration has enabled the validation and optimization of the system's components, achieving an unprecedented relative precision better than 3 mK.
|
|
|
|
Garcfa-Barcelo, J. M., Melcon, A. A., Cuendis, S. A., Diaz-Morcillo, A., Gimeno, B., Kanareykin, A., et al. (2023). On the Development of New Tuning and Inter-Coupling Techniques Using Ferroelectric Materials in the Detection of Dark Matter Axions. IEEE Access, 11, 30360–30372.
Abstract: Tuning is an essential requirement for the search of dark matter axions employing haloscopes since its mass is not known yet to the scientific community. At the present day, most haloscope tuning systems are based on mechanical devices which can lead to failures due to the complexity of the environment in which they are used. However, the electronic tuning making use of ferroelectric materials can provide a path that is less vulnerable to mechanical failures and thus complements and expands current tuning systems. In this work, we present and design a novel technique for using the ferroelectric Potassium Tantalate (KTaO3 or KTO) material as a tuning element in haloscopes based on coupled microwave cavities. In this line, the structures used in the Relic Axion Detector Exploratory Setup (RADES) group are based on several cavities that are connected by metallic irises, which act as interresonator coupling elements. In this article, we also show how to use these KTaO3 films as interresonator couplings between cavities, instead of inductive or capacitive metallic windows used in the past. These two techniques represent a crucial upgrade over the current systems employed in the dark matter axions community, achieving a tuning range of 2.23% which represents a major improvement as compared to previous works (<0.1%) for the same class of tuning systems. The theoretical and simulated results shown in this work demonstrate the interest of the novel techniques proposed for the incorporation of this kind of ferroelectric media in multicavity resonant haloscopes in the search for dark matter axions.
|
|