|
Balibrea-Correa, J., Lerendegui-Marco, J., Babiano-Suarez, V., Caballero, L., Calvo, D., Ladarescu, I., et al. (2021). Machine Learning aided 3D-position reconstruction in large LaCl3 crystals. Nucl. Instrum. Methods Phys. Res. A, 1001, 165249–17pp.
Abstract: We investigate five different models to reconstruct the 3D gamma-ray hit coordinates in five large LaCl3(Ce) monolithic crystals optically coupled to pixelated silicon photomultipliers. These scintillators have a base surface of 50 x 50 mm(2) and five different thicknesses, from 10 mm to 30 mm. Four of these models are analytical prescriptions and one is based on a Convolutional Neural Network. Average resolutions close to 1-2 mm fwhm are obtained in the transverse crystal plane for crystal thicknesses between 10 mm and 20 mm using analytical models. For thicker crystals average resolutions of about 3-5 mm fwhm are obtained. Depth of interaction resolutions between 1 mm and 4 mm are achieved depending on the distance of the interaction point to the photosensor surface. We propose a Machine Learning algorithm to correct for linearity distortions and pin-cushion effects. The latter allows one to keep a large field of view of about 70%-80% of the crystal surface, regardless of crystal thickness. This work is aimed at optimizing the performance of the so-called Total Energy Detector with Compton imaging capability (i-TED) for time-of-flight neutron capture cross-section measurements.
|
|
|
Villanueva-Domingo, P., & Villaescusa-Navarro, F. (2021). Removing Astrophysics in 21 cm Maps with Neural Networks. Astrophys. J., 907(1), 44–14pp.
Abstract: Measuring temperature fluctuations in the 21 cm signal from the epoch of reionization and the cosmic dawn is one of the most promising ways to study the universe at high redshifts. Unfortunately, the 21 cm signal is affected by both cosmology and astrophysics processes in a nontrivial manner. We run a suite of 1000 numerical simulations with different values of the main astrophysical parameters. From these simulations we produce tens of thousands of 21 cm maps at redshifts 10 <= z <= 20. We train a convolutional neural network to remove the effects of astrophysics from the 21 cm maps and output maps of the underlying matter field. We show that our model is able to generate 2D matter fields not only that resemble the true ones visually but whose statistical properties agree with the true ones within a few percent down to scales 2 Mpc(-1). We demonstrate that our neural network retains astrophysical information that can be used to constrain the value of the astrophysical parameters. Finally, we use saliency maps to try to understand which features of the 21 cm maps the network is using in order to determine the value of the astrophysical parameters.
|
|