|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fassi, F., Ferrer, A., et al. (2014). Measurement of the production of a W boson in association with a charm quark in pp collisions at root s=7 TeV with the ATLAS detector. J. High Energy Phys., 05(5), 068–67pp.
Abstract: The production of a W boson in association with a single charm quark is studied using 4.6 fb(-1) of pp collision data at root s = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96(-0.30)(+0.26) at Q (2) = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio sigma(W (+) +)/sigma(W (-) + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s-(s) over bar quark asymmetry.
|
|
Bayar, M., & Debastiani, V. R. (2017). a(0)(980) – f(0)(980) mixing in chi(c1) -> pi(0)f(0)(980) -> pi(0)pi(+)pi(-) and chi(c1) -> pi(0) a(0)(980) -> pi(0)pi(0)eta. Phys. Lett. B, 775, 94–99.
Abstract: We study the isospin breaking in the reactions chi(c1) -> pi(0)pi(+)pi(-) and chi(c1) -> pi(0)pi(0)eta and its relation to the a(0)(980) – f(0)(980) mixing, which was measured by the BESIII Collaboration. We show that the same theoretical model previously developed to study the chi(c1) -> eta pi(+)pi(-) reaction (also measured by BESIII), and further explored in the predictions to the eta(c) -> eta pi(+)pi(-), can be successfully employed in the present study. We assume that the chi(c1) behaves as an SU(3) singlet to find the weight in which trios of pseudoscalars are created, followed by the final state interaction of pairs of mesons to describe how the a(0)(980) and f(0)(980) are dynamically generated, using the chiral unitary approach in coupled channels. The isospin violation is introduced through the use of different masses for the charged and neutral kaons, either in the propagators of pairs of mesons created in the chi(c1) decay, or in the propagators inside the T matrix, constructed through the unitarization of the scattering and transition amplitudes of pairs of pseudoscalar mesons. We find that violating isospin inside the T matrix makes the pi(0)eta -> pi(+)pi(-) amplitude nonzero, which gives an important contribution and also enhances the effect of the K (K) over bar term. We also find that the most important effect in the total amplitude is the isospin breaking inside the T matrix, due to the constructive sum of pi(0)eta -> pi(+)pi(-) and K (K) over bar -> pi(+)pi(-), which is essential to get a good agreement with the experimental measurement of the mixing.
|
|
Debastiani, V. R., & Navarra, F. S. (2019). A non-relativistic model for the [cc][(c)over-bar(c)over-bar] tetraquark. Chin. Phys. C, 43(1), 013105–20pp.
Abstract: We use a non-relativistic model to study the spectroscopy of a tetraquark composed of [cc][(c) over bar(c) over bar] in a diquark-antidiquark configuration. By numerically solving the Schrodinger equation with a Cornell-inspired potential, we separate the four-body problem into three two-body problems. Spin-dependent terms (spin-spin, spin-orbit and tensor) are used to describe the splitting structure of the c (c) over bar spectrum and are also extended to the interaction between diquarks. Recent experimental data on charmonium states are used to fix the parameters of the model and a satisfactory description of the spectrum is obtained. We find that the spin-dependent interaction is sizable in the diquark-antidiquark system, despite the heavy diquark mass, and also that the diquark has a finite size if treated in the same way as the c (c) over bar systems. We find that the lowest S-wave T-4c tetraquarks might be below their thresholds of spontaneous dissociation into low-lying charmonium pairs, while orbital and radial excitations would be mostly above the corresponding charmonium pair thresholds. Finally, we repeat the calculations without the confining part of the potential and obtain bound diquarks and bound tetraquarks. This might be relevant to the study of exotic charmonium in the quark-gluon plasma. The T4c states could be investigated in the forthcoming experiments at the LHC and Belle II.
|
|
Debastiani, V. R., Liang, W. H., Xie, J. J., & Oset, E. (2017). Predictions for eta(c) -> eta pi(+)pi(-) producing f(0)(500), f(0)(980) and a(0)(980). Phys. Lett. B, 766, 59–64.
Abstract: We perform calculations for the eta(c) -> eta pi(+)pi(-) decay using elements of SU(3) symmetry to see the weight of different trios of pseudoscalars produced in this decay, prior to the final state interaction of the mesons. After that, the interaction of pairs of mesons, leading finally to eta pi(+)pi(-), is done using the chiral unitary approach. We evaluate the pi(+)pi(-) and pi eta mass distributions and find large and clear signals for f(0)(500), f(0)(980) and a(0)(980) excitation. The reaction is similar to the chi(c1) -> eta pi(+)pi(-), which has been recently measured at BESIII and its implementation and comparison with these predictions will be very valuable to shed light on the nature of the low mass scalar mesons.
|
|
Garcia-Recio, C., Nieves, J., & Tolos, L. (2010). D mesic nuclei. Phys. Lett. B, 690(4), 369–375.
Abstract: The energies and widths of several D-0 meson bound states for different nuclei are obtained using a D-meson selfenergy in the nuclear medium, which is evaluated in a selfconsistent manner using techniques of unitarized coupled-channel theory. The kernel of the meson-baryon interaction is based on a model that treats heavy pseudoscalar and heavy vector mesons on equal footing, as required by heavy quark symmetry. We find D-0 bound states in all studied nuclei, from C-12 up to Pb-208. The inclusion of vector mesons is the keystone for obtaining an attractive D-nucleus interaction that leads to the existence of D-0-nucleus bound states, as compared to previous studies based on SU(4) flavor symmetry. In some cases, the half widths are smaller than the separation of the levels, what makes possible their experimental observation by means of a nuclear reaction. This can be of particular interest for the future PANDA@FAIR physics program. We also find a D+ bound state in C-12, but it is too broad and will have a significant overlap with the energies of the continuum.
|
|
Gersabeck, E., & Pich, A. (2020). Tau and charm decays. C. R. Phys., 21(1), 75–92.
Abstract: A summary of recent precise results in tau and charm physics is presented. Topics include leptonic and hadronic tau decays, lepton flavour and lepton number violation, charm mixing and CP violation, leptonic and semileptonic charm decays, rare decays and spectroscopy.
|
|
Hidalgo-Duque, C., Nieves, J., & Pavon Valderrama, M. (2013). Heavy quark spin symmetry and SU(3)-flavour partners of the X (3872). Nucl. Phys. A, 914, 482–487.
Abstract: In this work, an Effective Field Theory (EFT) incorporating light SU(3)-flavour and heavy quark spin symmetries is used to describe charmed meson-antimeson bound states. At Lowest Order (LO), this means that only contact range interactions among the heavy meson and antimeson fields are involved. Besides, the isospin violating decays of the X(3872) will be used to constrain the interaction between the D and a (D) over bar* mesons in the isovector channel. Finally, assuming that the X(3915) and Y(4140) resonances are D* (D) over bar* and D-s* (D) over bar (s)* molecular states, we can determine the four Low Energy Constants (LECs) of the EFT that appear at LO and, therefore, the full spectrum of molecular states with isospin I = 0, 1/2 and 1.
|
|
Ji, T., Dong, X. K., Albaladejo, M., Du, M. L., Guo, F. K., Nieves, J., et al. (2023). Understanding the 0(++) and 2(++) charmonium(-like) states near 3.9 GeV. Sci. Bull., 68(7), 688–697.
Abstract: We propose that the X(3915) observed in the J/psi x channel is the same state as the chi(c2)(3930), and the X(3960), observed in the Ds+Ds- channel, is an S-wave Ds+Ds- hadronic molecule. In addition, the J(PC) = 0(++) component in the B+ -> D+D-K+ assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960), which has a mass around 3.94 GeV. To check the proposal, the available data in the D (D) over bar and Ds+Ds- channels from both B decays and gamma gamma fusion reaction are analyzed considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally. It is found that all the data in different processes can be simultaneously well reproduced, and the coupled-channel dynamics produce four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99 and 4.23 GeV, respectively. The results may deepen our understanding of the spectrum of charmonia as well as of the interactions between charmed hadrons.
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). A search for Xi(++)(cc) -> D(+)pK(-)pi(+) decays. J. High Energy Phys., 10(10), 124–21pp.
Abstract: A search for the Xi(++)(cc) baryon through the Xi(++)(cc) -> D(+)pK(-)pi(+) decay is performed with a data sample corresponding to an integrated luminosity of 1.7 fb(-1) recorded by the LHCb experiment in pp collisions at a centre-of-mass energy of 13 TeV. No significant signal is observed in the mass range from the kinematic threshold of the decay to 3800 MeV/c(2). An upper limit is set on the ratio of branching fractions R = B(Xi(++)(cc) -> D(+)pK(-)pi(+))/B(Xi(++)(cc) -> A(c)(+) K- pi(+)pi(+)) with R < 1.7 (2.1) x 10(-2) at the 90% (95%) confidence level at the known mass of the Xi(++)(cc) state.
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Dalitz plot analysis of the D+ -> K-K+K+ decay. J. High Energy Phys., 04(4), 063–36pp.
Abstract: The resonant structure of the doubly Cabibbo-suppressed decay D+-> K-K+K+ is studied for the first time. The measurement is based on a sample of pp-collision data, collected at a centre-of-mass energy of 8 TeV with the LHCb detector and corresponding to an integrated luminosity of 2 fb(-1). The amplitude analysis of this decay is performed with the isobar model and a phenomenological model based on an effective chiral Lagrangian. In both models the S-wave component in the K-K+ system is dominant, with a small contribution of the phi(1020) meson and a negligible contribution from tensor resonances. The K+K- scattering amplitudes for the considered combinations of spin (0,1) and isospin (0,1) of the two-body system are obtained from the Dalitz plot fit with the phenomenological decay amplitude.
|