|
Amaldi, U., Bonomi, R., Braccini, S., Crescenti, M., Degiovanni, A., Garlasche, M., et al. (2010). Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs. Nucl. Instrum. Methods Phys. Res. A, 620(2-3), 563–577.
Abstract: Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.
|
|
|
Verdu-Andres, S., Amaldi, U., & Faus-Golfe, A. (2013). CABOTO, a high-gradient linac for hadrontherapy. J. Radiat. Res., 54, 155–161.
Abstract: The field of hadrontherapy has grown rapidly in recent years. At present the therapeutic beam is provided by a cyclotron or a synchrotron, but neither cyclotrons nor synchrotrons present the best performances for hadrontherapy. The new generation of accelerators for hadrontherapy should allow fast active energy modulation and have a high repetition rate, so that moving organs can be appropriately treated in a reasonable time. In addition, a reduction of the dimensions and cost of the accelerators for hadrontherapy would make the acquisition and operation of a hadrontherapy facility more affordable, which would translate into great benefits for the potential hadrontherapy patients. The 'cyclinac', an accelerator concept that combines a cyclotron with a high-frequency linear accelerator (linac), is a fast-cycling machine specifically conceived to allow for fast active energy modulation. The present paper focuses on CABOTO (CArbon BOoster for Therapy in Oncology), a compact, efficient high-frequency linac that can accelerate C6+ ions and H-2 molecules from 150-410 MeV/u in similar to 24 m. The paper presents the latest design of CABOTO and discusses its performances.
|
|