|
Alvarez, V., Herrero-Bosch, V., Esteve, R., Laing, A., Rodriguez, J., Querol, M., et al. (2019). The electronics of the energy plane of the NEXT-White detector. Nucl. Instrum. Methods Phys. Res. A, 917, 68–76.
Abstract: This paper describes the electronics of NEXT-White (NEW) detector PMT plane, a high pressure xenon TPC with electroluminescent amplification (HPXe-EL) currently operating at the Laboratorio Subterraneo de Canfranc (LSC) in Huesca, Spain. In NEXT-White the energy of the event is measured by a plane of photomultipliers (PMTs) located behind a transparent cathode. The PMTs are Hamamatsu R11410-10 chosen due to their low radioactivity. The electronics have been designed and implemented to fulfill strict requirements: an overall energy resolution below 1% and a radiopurity budget of 20 mBq unit(-1) in the chain of Bi-214. All the components and materials have been carefully screened to assure a low radioactivity level and at the same time meet the required front-end electronics specifications. In order to reduce low frequency noise effects and enhance detector safety a grounded cathode connection has been used for the PMTs. This implies an AC-coupled readout and baseline variations in the PMT signals. A detailed description of the electronics and a novel approach based on a digital baseline restoration to obtain a linear response and handle AC coupling effects is presented. The final PMT channel design has been characterized with linearity better than 0.4% and noise below 0.4 mV.
|
|
An, L., Auffray, E., Betti, F., Dall'Omo, F., Gascon, D., Golutvin, A., et al. (2023). Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres. Nucl. Instrum. Methods Phys. Res. A, 1045, 167629–7pp.
Abstract: A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) and Y3Al5O12 (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution root was studied as a function of the incidence angle of the beam and found to be of the order of 10%/ E a 1%, in line with the LHCb Shashlik technology. The time resolution was measured with metal channel dynode photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 +/- 0.2) ps at 5 GeV.
|
|
ATLAS Collaboration(Abat, E. et al), Castillo Gimenez, V., Ferrer, A., Gonzalez, V., Higon-Rodriguez, E., Mitsou, V. A., et al. (2010). Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV. Nucl. Instrum. Methods Phys. Res. A, 621(1-3), 134–150.
Abstract: A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.
|