|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., Castillo, F. L., et al. (2021). Measurements of differential cross-sections in four-lepton events in 13 TeV proton-proton collisions with the ATLAS detector. J. High Energy Phys., 07(7), 005–67pp.
Abstract: Measurements of four-lepton differential and integrated fiducial cross-sections in events with two same-flavour, opposite-charge electron or muon pairs are presented. The data correspond to 139 fb(-1) of root s = 13 TeV proton-proton collisions, collected by the ATLAS detector during Run 2 of the Large Hadron Collider (2015-2018). The final state has contributions from a number of interesting Standard Model processes that dominate in different four-lepton invariant mass regions, including single Z boson production, Higgs boson production and on-shell ZZ production, with a complex mix of interference terms, and possible contributions from physics beyond the Standard Model. The differential cross-sections include the four-lepton invariant mass inclusively, in slices of other kinematic variables, and in different lepton flavour categories. Also measured are dilepton invariant masses, transverse momenta, and angular correlation variables, in four regions of four-lepton invariant mass, each dominated by different processes. The measurements are corrected for detector effects and are compared with state-of-the-art Standard Model calculations, which are found to be consistent with the data. The Z -> 4l branching fraction is extracted, giving a value of (4.41 +/- 0.30) x 10(-6). Constraints on effective field theory parameters and a model based on a spontaneously broken B – L gauge symmetry are also evaluated. Further reinterpretations can be performed with the provided information.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). A search for Xi(++)(cc) -> D(+)pK(-)pi(+) decays. J. High Energy Phys., 10(10), 124–21pp.
Abstract: A search for the Xi(++)(cc) baryon through the Xi(++)(cc) -> D(+)pK(-)pi(+) decay is performed with a data sample corresponding to an integrated luminosity of 1.7 fb(-1) recorded by the LHCb experiment in pp collisions at a centre-of-mass energy of 13 TeV. No significant signal is observed in the mass range from the kinematic threshold of the decay to 3800 MeV/c(2). An upper limit is set on the ratio of branching fractions R = B(Xi(++)(cc) -> D(+)pK(-)pi(+))/B(Xi(++)(cc) -> A(c)(+) K- pi(+)pi(+)) with R < 1.7 (2.1) x 10(-2) at the 90% (95%) confidence level at the known mass of the Xi(++)(cc) state.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Amplitude analysis of B-s(0) -> K-S(0) K-+/-pi(-/+) decays. J. High Energy Phys., 06(6), 114–28pp.
Abstract: The first untagged decay-time-integrated amplitude analysis of B 0 s ! K 0 S K decays is performed using a sample corresponding to 3: 0 fb of pp collision data recorded with the LHCb detector during 2011 and 2012. The data are described with an amplitude model that contains contributions from the intermediate resonances K 9892) 0;+, K 2 91430) 0;+ and K 0 91430) 0;+, and their charge conjugates. Measurements of the branching fractions of the decay modes B 0 s ! K 9892) K and B 0 s ! K 9892) 0 K 0 are in agreement with, and more precise than, previous results. The decays B 0 s ! K 0 91430) K and B 0 s ! K 0 91430) 0 K 0 are observed for the fi rst time, each with signi fi cance over 10 standard deviations.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Observation of the doubly Cabibbo-suppressed decay Xi(+)(c) -> p phi. J. High Energy Phys., 04(4), 084–18pp.
Abstract: The doubly Cabibbo- suppressed decay Xi(+)(c) -> p phi with ! K+K is observed for the fi rst time, with a statistical signi fi cance of more than fi fteen standard deviations. The data sample used in this analysis corresponds to an integrated luminosity of 2 fb recorded with the LHCb detector in pp collisions at a centre- of- mass energy of 8TeV. The ratio of branching fractions between the decay + c ! p and the singly Cabibbo- suppressed decay + c ! pK is measured to be B (Xi(+)(c) -> p phi) B (Xi(+)(c) -> p phi) = (19 : 8 0 : 7 0 : 9 0 : 2) 10 where the fi rst uncertainty is statistical, the second systematic and the third due to the knowledge of the Xi(+)(c) -> pK(+)pi(+) branching fraction.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Observation of the Lambda(0)(b) -> chi(c1) (3872)pK(-) decay. J. High Energy Phys., 09(9), 028–20pp.
Abstract: Using proton-proton collision data, collected with the LHCb detector and corresponding to 1.0, 2.0 and 1.9 fb(-1) of integrated luminosity at the centre-of-mass energies of 7, 8, and 13 TeV, respectively, the decay Lambda(0)(b) -> chi(c1)(3872)pK(-) with chi(c1)(3872) -> J/psi pi(+)pi(-) is observed for the first time. The significance of the observed signal is in excess of seven standard deviations. It is found that (58 +/- 15)% of the decays proceed via the two-body intermediate state chi(c1)(3872)Lambda(1520). The branching fraction with respect to that of the Lambda(0)(b) -> psi(2S)pK(-) decay mode, where the psi(2S) meson is reconstructed in the J/psi pi(+)pi(-) final state, is measured to be: B(Lambda(0)(b) -> chi(c1)(3872)pK(-))/B (Lambda(0)(b) -> psi(2S)pK(-)) x B(chi(c1)(3872) -> J/psi pi(+)pi(-))/B(psi(2S) -> J/psi pi(+)pi(-)) = (5.4 +/- 1.1 +/- 0.2) x 10(-2), where the first uncertainty is statistical and the second is systematic.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of branching fraction ratios for B+ -> D*+D-K+, B+ -> D*-D+K+, and B-0 -> (D*-DK+)-K-0 decays. J. High Energy Phys., 12(12), 139–22pp.
Abstract: A measurement of four branching-fraction ratios for three-body decays of B mesons involving two open-charm hadrons in the final state is presented. Run 1 and Run 2 pp collision data are used, recorded by the LHCb experiment at centre-of-mass energies 7, 8, and 13 TeV and corresponding to an integrated luminosity of 9 fb(-1). The measured branching-fraction ratios are<disp-formula id=“Equa”><mml:mtable displaystyle=“true”><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B+-> D+D-K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B+-> D<overbar></mml:mover>0D0K+</mml:mfenced></mml:mfrac>=0.5170.0150.013 +/- 0.011,</mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B+-> D-D+K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B+-> D<overbar></mml:mover>0D0K+</mml:mfenced></mml:mfrac>=0.577 +/- 0.016 +/- 0.013 +/- 0.013,</mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mtable><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B0 -> D-D0K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B0 -> D-D0K+</mml:mfenced></mml:mfrac>=1.754 +/- 0.028 +/- 0.016 +/- 0.035,</mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mfrac>B<mml:mfenced close=“)” open=“(”>B+-> D+D-K+</mml:mfenced>B<mml:mfenced close=“)” open=“(”>B+-> D-D+K+</mml:mfenced></mml:mfrac>=0.907 +/- 0.033<mml:mo>+/- 0.014<mml:mo>,</mml:mtd></mml:mtr></mml:mtable></mml:mtd></mml:mtr></mml:mtable><graphic position=“anchor” xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:href=“13130202014428ArticleEqua.gif”></graphic></disp-formula><p id=“Par2”>where the first of the uncertainties is statistical, the second systematic, and the third is due to the uncertainties on the D-meson branching fractions. These are the most accurate measurements of these ratios to date.<fig id=“Figa” position=“anchor”><graphic position=“anchor” specific-use=“HTML” mime-subtype=“JPEG” xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:href=“MediaObjects/13130202014428FigaHTML.jpg” id=“MO1”></graphic
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Observation of the semileptonic decay B+-> p(p)over-bar mu(+)nu(mu). J. High Energy Phys., 03(3), 146–22pp.
Abstract: The Cabibbo-suppressed semileptonic decay B+-> pp over bar mu+nu μis observed for the first time using a sample of pp collisions corresponding to an integrated luminosity of 1.0, 2.0 and 1.7 fb at centre-of-mass energies of 7, 8 and 13TeV, respectively. The differential branching fraction is measured as a function of the pp invariant mass using the decay mode B+ ! J= K+ for normalisation. The total branching fraction is measured to be B (B+ ! pp+) = (5:27+0:23 0:21 0:15) 10 where the first uncertainty is statistical, the second systematic and the third is from the uncertainty on the branching fraction of the normalisation channel.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Study of the psi(2)(3823) and chi(c1)(3872) states in B+->(J/psi pi(+)pi(-))K(+)decays. J. High Energy Phys., 08(8), 123–29pp.
Abstract: The decays B+-> J/psi pi(+)pi(-)K(+)are studied using a data set corresponding to an integrated luminosity of 9 fb(-1)collected with the LHCb detector in proton-proton collisions between 2011 and 2018. Precise measurements of the ratios of branching fractions with the intermediate psi(2)(3823), chi(c1)(3872) and psi(2S) states are reported. The values areBB+->psi 2(“>3823K+xB psi 2(”>3823 -> J/psi pi+pi-BB+->chi c1>3872K+xB chi c1>3872 -> J/psi pi+pi-=>3.56 +/- 0.67 +/- 0.11x10-2,BB+->psi 2>3823K+xB psi 2>3823 -> J/psi pi+pi-BB+->psi>2SK+xB psi>2S -> J/psi pi+pi-=>1.31 +/- 0.25 +/- 0.04x10-3,BB+->chi c1>3872K+xB chi c1>3872 -> J/psi pi+pi-BB+->psi>2SK+xB psi>2S -> J/psi pi+pi-= where the first uncertainty is statistical and the second is systematic. The decay of B+->psi(2)(3823)K(+)with psi(2)(3823)-> J/psi pi(+)pi(-)is observed for the first time with a significance of 5.1 standard deviations. The mass differences between the psi(2)(3823), chi(c1)(3872) and psi(2S) states are measured to be m chi c1>3872-m psi 2>3823=47. 50 +/- 0.53 +/- 0.13MeV/c2,m psi 2 2S=185.49 +/- 0.06 +/- 0.03MeV/c2, resulting in the most precise determination of the chi(c1)(3872) mass. The width of the psi(2)(3823) state is found to be below 5.2 MeV at 90% confidence level. The Breit-Wigner width of the chi(c1)(3872) state is measured to be Gamma chi c13872BW=0.96-0.18+0.19 +/- 0.21MeV={0.96}_{-0.18}<^>{+0.19}\pm 0.21\;\mathrm{MeV} which is inconsistent with zero by 5.5 standard deviations.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Test of lepton universality with Lambda(0)(b) -> pK(-) l(+)l(-). J. High Energy Phys., 05(5), 40–27pp.
Abstract: The ratio of branching fractions of the decays -> pK(-)mu(+)mu(-),RpK-1}, is measured for the first time using proton-proton collision data corresponding to an integrated luminosity of 4.7 fb(-1) recorded with the LHCb experiment at center-of-mass energies of 7, 8 and 13 TeV. In the dilepton mass-squared range 0.1 < q(2)< 6.0 GeV2/c(4) and the pK(-) mass range m(pK(-)) < 2600 MeV/c(2), the ratio of branching fractions is measured to be RpK-1=1.17-0.16+0.18 +/- 0.0$$ {R}{pK}<^>{-1}={1.17}{-0.16}<^>{+0.18}\pm 0.07 $$\end{document}, where the first uncertainty is statistical and the second systematic. This is the first test of lepton universality with b baryons and the first observation of the decay -> pK(-)e(+)e(-).
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). First observation of B+ -> D-s(+) K+ K- decays and a search for B+ -> D-s(+) phi decays. J. High Energy Phys., 01(1), 131–22pp.
Abstract: A search for B+ -> D-s(+) K+ K- decays is performed using pp collision data corresponding to an integrated luminosity of 4.8 fb(-1), collected at centre-of-mass energies of 7, 8 and 13 TeV with the LHCb experiment. A significant signal is observed for the first time and the branching fraction is determined to be B(B+ -> D-s(+) K+ K-) = (7.1 +/- 0.5 +/- 0.6 +/- 0.7) x 10(-6), where the first uncertainty is statistical, the second systematic and the third due to the uncertainty on the branching fraction of the normalisation mode B+ -> D-s(+)(D) over bar (0). A search is also performed for the pure annihilation decay B+ -> D-s(+)(D) over bar (0). No significant signal is observed and a limit of B(B+ -> D-s(+) phi) < 4.9 x 10(-7) (4.2 x 10(-7)) is set on the branching fraction at 95% (90%) confidence level.
|
|