|
Adolf, P., Hirsch, M., Krieg, S., Pas, H., & Tabet, M. (2024). Fitting the DESI BAO data with dark energy driven by the Cohen-Kaplan-Nelson bound. J. Cosmol. Astropart. Phys., 08(8), 048–18pp.
Abstract: Gravity constrains the range of validity of quantum field theory. As has been pointed out by Cohen, Kaplan, and Nelson (CKN), such effects lead to interdependent ultraviolet (UV) and infrared (IR) cutoffs that may stabilize the dark energy of the universe against quantum corrections, if the IR cutoff is set by the Hubble horizon. As a consequence of the cosmic expansion, this argument implies a time-dependent dark energy density. In this paper we confront this idea with recent data from DESI BAO, Hubble and supernova measurements. We find that the CKN model provides a better fit to the data than the Lambda CDM model and can compete with other models of time-dependent dark energy that have been studied so far.
|
|
|
Albertus, C., Hernandez, E., & Nieves, J. (2010). Hyperfine mixing in electromagnetic decay of doubly heavy bc baryons. Phys. Lett. B, 690(3), 265–271.
Abstract: We investigate the role of hyperfine mixing in the electromagnetic decay of ground state doubly heavy bc baryons. As in the case of a previous calculation on b -> c semileptonic decays of doubly heavy baryons, we find large corrections to the electromagnetic decay widths due to this mixing. Contrary to the weak case just mentioned, we find here that one cannot use electromagnetic width relations obtained in the infinite heavy quark mass limit to experimentally extract information on the admixtures in a model independent way.
|
|
|
Ardu, M., Queiroz, D., & Vives, O. (2025). Asymmetric dark matter in SUSY with approximate R-symmetry. J. Cosmol. Astropart. Phys., 08(8), 013–28pp.
Abstract: We implement the asymmetric dark matter framework, linking the ordinary and dark matter abundances, within a supersymmetric context. We consider a supersymmetric model that respects an approximate U(1)R symmetry, which is broken in such a way that at high temperature the R breaking sector mediate processes in equilibrium, but at the SUSY mass scale, the sparticles asymmetry is frozen. In this framework, the gravitino serves as the dark matter candidate, and its mass is predicted to be similar to 10 GeV to match the observed relic abundance. We identify several realistic spectra; however, the requirement for the Next-to-Lightest Supersymmetric Particle (NLSP) to decay into the gravitino before Big Bang Nucleosynthesis constrains the viable spectrum to masses above 2 TeV.
|
|
|
Aristizabal Sierra, D., Tortola, M., Valle, J. W. F., & Vicente, A. (2014). Leptogenesis with a dynamical seesaw scale. J. Cosmol. Astropart. Phys., 07(7), 052–20pp.
Abstract: In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting B – L asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range, the efficiency can be largely enhanced, reaching in some cases maximal values. Moreover, the B – L asymmetry yield turns out to be independent upon initial conditions, in contrast to the “standard” case. On the other hand, when the annihilation processes are fast, the right-handed neutrino distribution tends to a thermal one down to low temperatures, implying a drastic suppression of the efficiency which in some cases can render the B – L generation mechanism inoperative.
|
|
|
Barenboim, G., Fernandez-Martinez, E., Mena, O., & Verde, L. (2010). The dark side of curvature. J. Cosmol. Astropart. Phys., 03(3), 008–17pp.
Abstract: Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.
|
|