| 
		
		
	 | 
	
		Bas i Beneito, A., Gargalionis, J., Herrero-Garcia, J., Santamaria, A., & Schmidt, M. A. (2024). An EFT approach to baryon number violation: lower limits on the new physics scale and correlations between nucleon decay modes. J. High Energy Phys., 07(7), 004–37pp.
		
		
			Abstract: Baryon number is an accidental symmetry of the Standard Model at the Lagrangian level. Its violation is arguably one of the most compelling phenomena predicted by physics beyond the Standard Model. Furthermore, there is a large experimental effort to search for it including the Hyper-K, DUNE, JUNO, and THEIA experiments. Therefore, an agnostic, model-independent, analysis of baryon number violation using the power of Effective Field Theory is very timely. In particular, in this work we study the contribution of dimension six and seven effective operators to |triangle(B – L)| = 0, 2 nucleon decays taking into account the effects of Renormalisation Group Evolution. We obtain lower limits on the energy scale of each operator and study the correlations between different decay modes. We find that for some operators the effect of running is very significant. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Bas i Beneito, A., Gargalionis, J., Herrero-Garcia, J., & Schmidt, M. A. (2025). Squeezing proton decay and neutrino masses: upper bounds on standard model extensions. J. High Energy Phys., 10(10), 083–40pp.
		
			 
		 
		
			Abstract: Baryon and lepton number are excellent low-energy symmetries of the Standard Model (SM) that tightly constrain the form of its extensions. In this paper we investigate the possibility that these accidental symmetries are violated in the deep UV, in such a way that one multiplet necessary for their violation lives at an intermediate energy scale M above the electroweak scale. We write down the simplest effective operators containing each multiplet that may couple linearly to the SM at the renormalisable level and estimate the dominant contribution of the underlying UV model to the pertinent operators in the SMEFT: the dimension-5 Weinberg operator and the baryon-number-violating operators up to dimension 7. Our results are upper bounds on the scale M for each multiplet-operator pair, derived from neutrino-oscillation data as well as prospective nucleon-decay searches. We also analyse the possibility that both processes are simultaneously explained within a natural UV model. In addition, we advocate that our framework provides a convenient and digestible way of organising the space of UV models that violate these symmetries. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Beltran, R., Cepedello, R., & Hirsch, M. (2023). Tree-level UV completions for NRSMEFT d=6 and d=7 operators. J. High Energy Phys., 08(8), 31pp.
		
		
			Abstract: We study ultra-violet completions for operators in standard model effective field theory extended with right-handed neutrinos (NRSMEFT). Using a diagrammatic method, we generate systematically lists of possible tree-level completions involving scalars, fermions or vectors for all operators at d = 6 and d = 7, which contain at least one right-handed neutrino. We compare our lists of possible UV models to the ones found for pure SMEFT. We also discuss how the observation of LNV processes via NRSMEFT operators at the LHC can be related to Majorana neutrino masses of the standard model neutrinos. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Candela, P. M., Khoze, V. V., & Turner, J. (2025). Monopoles at future neutrino detectors. J. High Energy Phys., 07(7), 034–21pp.
		
		
			Abstract: We investigate the potential of future neutrino experiments, DUNE and Hyper-Kamiokande, to probe magnetic monopoles via Callan-Rubakov (CR) processes. We consider both relativistic and non-relativistic monopoles and focus on two primary detection signatures: high-energy antiproton production and proton decay catalysis. For relativistic monopoles, our analysis of the CR process indicates antiproton production with energies near 900 GeV and we find that both experiments can provide limits on the fluxes an order of magnitude below the Parker bound (approximately Phi less than or similar to 10-16 cm-2 s-1 sr-1). For non-relativistic monopoles, we recast the experimental sensitivity to proton decay catalysis and obtain upper limits on the monopole flux of Phi less than or similar to 2.3 x 10-23 cm-2 s-1 sr-1 for Hyper-Kamiokande and Phi less than or similar to 1.1 x 10-22 cm-2 s-1 sr-1 for DUNE. 
			
			
		 
	 | 
	
		   
		 
		
	 | 
	| 
		
		
	 | 
	
		Coito, L., Faubel, C., Herrero-Garcia, J., Santamaria, A., & Titov, A. (2022). Sterile neutrino portals to Majorana dark matter: effective operators and UV completions. J. High Energy Phys., 08(8), 085–36pp.
		
			 
		 
		
			Abstract: Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively. 
			
			
		 
	 | 
	
		   
		 
		
	 |