|
Bauer, M., Perez-Soler, J., & Shergold, J. D. (2024). Generalised hydrogen interactions with CINCO: a window to new physics. J. High Energy Phys., 10(10), 176–26pp.
Abstract: We present semi-analytic solutions for atomic transition rates in hydrogenic atoms induced by scalar, pseudoscalar, vector, axial-vector, and tensor interactions. Our results agree with quantum electrodynamics predictions to similar to 0.005 % precision, and further allow us to calculate absorption and emission rates for axions, hidden photons, light scalars or other dark matter candidates for hydrogen and hydrogenic ions. These results can be used to inform searches for light new physics as well as in calculations relevant to searches for fifth forces or varying fundamental constants, with applications from astrophysics to laboratory spectroscopy experiments. We also provide a dedicated tool for the construction of hydrogenic transition amplitudes: “Computation of hydrogen radial INtegrals and COefficients” (CINCO).
|
|
|
Beltran, R., Cottin, G., Hirsch, M., Titov, A., & Wang, Z. S. (2023). Reinterpretation of searches for long-lived particles from meson decays. J. High Energy Phys., 05(5), 031–31pp.
Abstract: Many models beyond the Standard Model predict light and feebly interacting particles that are often long-lived. These long-lived particles (LLPs) in many cases can be produced from meson decays. In this work, we propose a simple and quick reinterpretation method for models predicting LLPs produced from meson decays. With the method, we are not required to run Monte-Carlo simulation, implement detector geometries and efficiencies, or apply experimental cuts in an event analysis, as typically done in recasting and reinterpretation works. The main ingredients our method requires are only the theoretical input, allowing for computation of the production and decay rates of the LLPs. There are two conditions for the method to work: firstly, the LLPs in the models considered should be produced from a set of mesons with similar mass and lifetime (or the same meson) and second, the LLPs should, in general, have a lab-frame decay length much larger than the distance between the interaction point and the detector. As an example, we use this method to reinterpret exclusion bounds on heavy neutral leptons (HNLs) in the minimal “3+1” scenario, into those for HNLs in the general effective-field-theory framework as well as for axion-like particles. We are able to reproduce existing results, and obtain new bounds via reinterpretation of past experimental results, in particular, from CHARM and Belle.
|
|
|
Coloma, P., Hernandez, P., & Urrea, S. (2022). New bounds on axion-like particles from MicroBooNE. J. High Energy Phys., 08(8), 025–25pp.
Abstract: Neutrino experiments lie at the edge of the intensity frontier and therefore can be exploited to search for new light particles weakly coupled to the visible sector. In this work we derive new constraints on axion-like particles (ALPs) using data from the MicroBooNE experiment, from a search for e(+)e(-) pairs pointing in the direction of the NuMI absorber. In particular, we consider the addition of higher-dimensional effective operators coupling the ALP to the electroweak gauge bosons. These would induce K -> pi a from kaon decay at rest in the NuMI absorber, as well as ALP decays into pairs of leptons or photons. We discuss in detail and compare various results obtained for the decay width K -> pi a in previous literature. For the operator involving the Higgs, MicroBooNE already sets competitive bounds (comparable to those of NA62) for ALP masses between 100 and 200 MeV. We also compute the expected sensitivities from the full NuMI dataset recorded at MicroBooNE. Our results show that a search for a -> gamma gamma signal may be able to improve over current constraints from beam-dump experiments on the operator involving the ALP coupling to the W.
|
|
|
Domcke, V., Garcia-Cely, C., Lee, S. M., & Rodd, N. L. (2024). Symmetries and selection rules: optimising axion haloscopes for Gravitational Wave searches. J. High Energy Phys., 03(3), 128–51pp.
Abstract: In the presence of electromagnetic fields, both axions and gravitational waves (GWs) induce oscillating magnetic fields: a potentially detectable fingerprint of their presence. We demonstrate that the response is largely dictated by the symmetries of the instruments used to search for it. Focussing on low mass axion haloscopes, we derive selection rules that determine the parametric sensitivity of different detector geometries to axions and GWs, and which further reveal how to optimise the experimental geometry to maximise both signals. The formalism allows us to forecast the optimal sensitivity to GWs in the range of 100 kHz to 100 MHz for instruments such as ABRACADABRA, BASE, ADMX SLIC, SHAFT, WISPLC, and DMRadio.
|
|
|
Esser, F., Madigan, M., Salas-Bernardez, A., Sanz, V., & Ubiali, M. (2024). Di-Higgs production via axion-like particles. J. High Energy Phys., 10(10), 164–22pp.
Abstract: Due to the pseudo-scalar nature of the axion-like particle (ALP), the CP-conserving production of two Higgs bosons via the ALP necessarily involves an additional Z or gamma boson. We examine the existing constraints from di-Higgs searches at Run 2 of the LHC and find that, despite the presence of extra objects in the final state, these searches are sensitive to a combination of ALP couplings to gluons and three-bosons in the TeV scale range. Additionally, we propose a specialized search strategy incorporating an energetic leptonic Z boson. This refined ALP-induced production process would allow for the identification of the h h -> 4 b-jet final state and could potentially probe the TeV scale using data from Run 2 of the LHC. This production process can also occur through a coupling between the top quark and the ALP. We translate the current constraints on di-Higgs production into new limits on the ALP-top coupling.
|
|
|
Garcia-Barcelo, J. M., Diaz-Morcillo, A., & Gimeno, B. (2023). Enhancing resonant circular-section haloscopes for dark matter axion detection: approaches and limitations in volume expansion. J. High Energy Phys., 11(11), 159–30pp.
Abstract: Haloscopes, microwave resonant cavities utilized in detecting dark matter axions within powerful static magnetic fields, are pivotal in modern astrophysical research. This paper delves into the realm of cylindrical geometries, investigating techniques to augment volume and enhance compatibility with dipole or solenoid magnets. The study explores volume constraints in two categories of haloscope designs: those reliant on single cavities and those employing multicavities. In both categories, strategies to increase the expanse of elongated structures are elucidated. For multicavities, the optimization of space within magnets is explored through 1D configurations. Three subcavity stacking approaches are investigated, while the foray into 2D and 3D geometries lays the groundwork for future topological developments. The results underscore the efficacy of these methods, revealing substantial room for progress in cylindrical haloscope design. Notably, an elongated single cavity design attains a three-order magnitude increase in volume compared to a WC-109 standard waveguide-based single cavity. Diverse prototypes featuring single cavities, 1D, 2D, and 3D multicavities highlight the feasibility of leveraging these geometries to magnify the volume of tangible haloscope implementations.
|
|
|
Garcia-Barcelo, J. M., Melcon, A. A., Diaz-Morcillo, A., Gimeno, B., Lozano-Guerrero, A. J., Monzi-Cabrera, J., et al. (2023). Methods and restrictions to increase the volume of resonant rectangular-section haloscopes for detecting dark matter axions. J. High Energy Phys., 08(8), 098–37pp.
Abstract: Haloscopes are resonant cavities that serve as detectors of dark matter axions when they are immersed in a strong static magnetic field. In order to increase the volume and improve space compatibility with dipole or solenoid magnets for axion searches, various haloscope design techniques for rectangular geometries are discussed in this study. The volume limits of two types of haloscopes are explored: those based on single cavities and those based on multicavities. In both cases, possibilities for increasing the volume of long and/or tall structures are presented. For multicavities, 1D geometries are explored to optimise the space in the magnets. Also, 2D and 3D geometries are introduced as a first step in laying the foundations for the development of these kinds of topologies. The results prove the usefulness of the developed methods, evidencing the ample room for improvement in rectangular haloscope designs nowadays. A factor of three orders of magnitude improvement in volume compared with a single cavity based on the WR-90 standard waveguide is obtained with the design of a long and tall single cavity. Similar procedures have been applied for long and tall multicavities. Experimental measurements are shown for prototypes based on tall multicavities and 2D structures, demonstrating the feasibility of using these types of geometries to increase the volume of real haloscopes.
|
|
|
Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., & Yang, J. M. (2022). Anomaly-free ALP from non-Abelian flavor symmetry. J. High Energy Phys., 08(8), 306–21pp.
Abstract: Motivated by the XENON1T excess in electron-recoil measurements, we investigate the prospects of probing axion-like particles (ALP) in lepton flavor violation experiments. In particular, we identify such ALP as a pseudo-Goldstone from the spontaneous breaking of the flavor symmetries that explain the mixing structure of the Standard Model leptons. We present the case of the flavor symmetries being a non-Abelian U(2) and the ALP originating from its U(1) subgroup, which is anomaly-free with the Standard Model group. We build two explicit realistic examples that reproduce leptonic masses and mixings and show that the ALP which is consistent with XENON1T anomaly could be probed by the proposed LFV experiments.
|
|
|
Herrero-Brocal, A., & Vicente, A. (2024). The majoron coupling to charged leptons. J. High Energy Phys., 01(1), 078–33pp.
Abstract: The particle spectrum of all Majorana neutrino mass models with spontaneous violation of global lepton number include a Goldstone boson, the so-called majoron. The presence of this massless pseudoscalar changes the phenomenology dramatically. In this work we derive general analytical expressions for the 1-loop coupling of the majoron to charged leptons. These can be applied to any model featuring a majoron that have a clear hierarchy of energy scales, required for an expansion in powers of the low-energy scale to be valid. We show how to use our general results by applying them to some example models, finding full agreement with previous results in several popular scenarios and deriving novel ones in other setups.
|
|