|
Al Kharusi, S. et al, & Colomer, M. (2021). SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy. New J. Phys., 23(3), 031201–34pp.
Abstract: The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.
|
|
|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2025). The ANTARES detector: Two decades of neutrino searches in the Mediterranean Sea. Phys. Rep., 1121, 1–46.
Abstract: Interest for studying cosmic neutrinos using deep-sea detectors has increased after the discovery of a diffuse flux of cosmic neutrinos by the IceCube collaboration and the possibility of wider multi-messenger studies with the observations of gravitational waves. The ANTARES detector was the first neutrino telescope in seawater, operating successfully in the Mediterranean Sea for more than a decade and a half. All challenges related to the operation in the deep sea were accurately addressed by the collaboration. Deployment and connection operations became smoother over time; data taking and constant re-calibration of the detector due to the variable environmental conditions were fully automated. A wealth of results on the subject of astroparticle physics, particle physics and multi-messenger astronomy have been obtained, despite the relative modest size of the detector, paving the way to a new generation of larger undersea detectors. This review summarizes the efforts by the ANTARES collaboration that made the possibility to operate neutrino telescopes in seawater a reality and the results obtained in this endeavor.
|
|
|
ANTARES, I. C., Pierre Auger and Telescope Array Collaborations(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2022). Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays. Astrophys. J., 934(2), 164–21pp.
Abstract: For several decades, the origin of ultra-high-energy cosmic rays (UHECRs) has been an unsolved question of high-energy astrophysics. One approach for solving this puzzle is to correlate UHECRs with high-energy neutrinos, since neutrinos are a direct probe of hadronic interactions of cosmic rays and are not deflected by magnetic fields. In this paper, we present three different approaches for correlating the arrival directions of neutrinos with the arrival directions of UHECRs. The neutrino data are provided by the IceCube Neutrino Observatory and ANTARES, while the UHECR data with energies above similar to 50 EeV are provided by the Pierre Auger Observatory and the Telescope Array. All experiments provide increased statistics and improved reconstructions with respect to our previous results reported in 2015. The first analysis uses a high-statistics neutrino sample optimized for point-source searches to search for excesses of neutrino clustering in the vicinity of UHECR directions. The second analysis searches for an excess of UHECRs in the direction of the highest-energy neutrinos. The third analysis searches for an excess of pairs of UHECRs and highest-energy neutrinos on different angular scales. None of the analyses have found a significant excess, and previously reported overfluctuations are reduced in significance. Based on these results, we further constrain the neutrino flux spatially correlated with UHECRs.
|
|
|
Beltran Jimenez, J., Heisenberg, L., Olmo, G. J., & Rubiera-Garcia, D. (2018). Born-Infeld inspired modifications of gravity. Phys. Rep., 727, 1–129.
Abstract: General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.
|
|
|
HAWC Collaboration(Abeysekara, A. U. et al), & Salesa Greus, F. (2023). The High-Altitude Water Cherenkov (HAWC) observatory in Mexico: The primary detector. Nucl. Instrum. Methods Phys. Res. A, 1052, 168253–18pp.
Abstract: The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC observatory and its analysis techniques build on experience of the Milagro experiment in using ground-based water Cherenkov detectors for gamma-ray astronomy. HAWC is located on the Sierra Negra volcano in Mexico at an elevation of 4100 meters above sea level. The completed HAWC observatory principal detector (HAWC) consists of 300 closely spaced water Cherenkov detectors, each equipped with four photomultiplier tubes to provide timing and charge information to reconstruct the extensive air shower energy and arrival direction. The HAWC observatory has been optimized to observe transient and steady emission from sources of gamma rays within an energy range from several hundred GeV to several hundred TeV. However, most of the air showers detected are initiated by cosmic rays, allowing studies of cosmic rays also to be performed. This paper describes the characteristics of the HAWC main array and its hardware.
|
|