|
Feijoo, A., Gazda, D., Magas, V., & Ramos, A. (2021). The (K)over-barN Interaction in Higher Partial Waves. Symmetry-Basel, 13(8), 1434–22pp.
Abstract: We present a chiral (K) over barN interaction model that has been developed and optimized in order to account for the experimental data of inelastic (K) over barN reaction channels that open at higher energies. In particular, we study the effect of the higher partial waves, which originate directly from the chiral Lagrangian, as they could supersede the role of high-spin resonances employed in earlier phenomenological models to describe meson-baryon cross sections in the 2 GeV region. We present a detailed derivation of the partial wave amplitudes that emerge from the chiral SU(3) meson-baryon Lagrangian up to the d-waves and next-to-leading order in the chiral expansion. We implement a nonperturbative unitarization in coupled channels and optimize the model parameters to a large pool of experimental data in the relevant energy range where these new contributions are expected to be important. The obtained results are encouraging. They indicate the ability of the chiral higher partial waves to extend the description of the scattering data to higher energies and to account for structures in the reaction cross-sections that cannot be accommodated by theoretical models limited to the s-waves.
|
|
Kamiya, Y., Miyahara, K., Ohnishi, S., Ikeda, Y., Hyodo, T., Oset, E., et al. (2016). Antikaon-nucleon interaction and Lambda(1405) in chiral SU(3) dynamics. Nucl. Phys. A, 954, 41–57.
Abstract: The properties of the Lambda(1405) resonance are key ingredients for determining the antikaon-nucleon interaction in strangeness nuclear physics, and the novel internal structure of the Lambda(1405) is of great interest in hadron physics, as a prototype case of a baryon that does not fit into the simple three-quark picture. We show that a quantitative description of the antikaon-nucleon interaction with the Lambda(1405) is achieved in the framework of chiral SU(3) dynamics, with the help of recent experimental progress. Further constraints on the (K) over barN subthreshold interaction are provided by analyzing pi Sigma spectra in various processes, such as the K(-)d -> pi Sigma n reaction and the Lambda(c) -> pi pi Sigma decay. The structure of the Lambda(1405) is found to be dominated by an antikaon-nucleon molecular configuration, based on its wavefunction derived from a realistic (K) over barN potential and the compositeness criteria from a model-independent weak-binding relation.
|