Beltran Jimenez, J., & Delhom, A. (2019). Ghosts in metric-affine higher order curvature gravity. Eur. Phys. J. C, 79(8), 656–7pp.
Abstract: We disprove the widespread belief that higher order curvature theories of gravity in the metric-affine formalism are generally ghost-free. This is clarified by considering a sub-class of theories constructed only with the Ricci tensor and showing that the non-projectively invariant sector propagates ghost-like degrees of freedom. We also explain how these pathologies can be avoided either by imposing a projective symmetry or additional constraints in the gravity sector. Our results put forward that higher order curvature gravity theories generally remain pathological in the metric-affine (and hybrid) formalisms and highlight the key importance of the projective symmetry and/or additional constraints for their physical viability and, by extension, of general metric-affine theories.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Search for the rare decay B+ -> mu(+) mu(-) mu(+)nu(mu). Eur. Phys. J. C, 79(8), 675–12pp.
Abstract: A search for the rare leptonic decay B +. μ+ μ- μ+.mu is performed using proton- proton collision data corresponding to an integrated luminosity of 4.7 fb – 1 collected by the LHCb experiment. The search is carried out in the region where the lowest of the two μ+ μ- mass combinations is below 980 MeV/ c2. The data are consistent with the background- only hypothesis and an upper limit of 1.6x10 – 8 at 95% confidence level is set on the branching fraction in the stated kinematic region.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at s=13 TeV. Eur. Phys. J. C, 79(8), 639–40pp.
Abstract: Algorithms used for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC) are presented in this paper; these algorithms are used in ATLAS physics analyses that involve electrons in the final state and which are based on the 2015 and 2016 proton-proton collision data produced by the LHC at root s = 13 The performance of the electron reconstruction, identification, isolation, and charge identification algorithms is evaluated in data and in simulated samples using electrons from Z -> ee and J/psi -> eedecays. Typical examples of combinations of electron reconstruction, identification, and isolation operating points used in ATLAS physics analyses are shown.
|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurement of distributions sensitive to the underlying event in inclusive Z boson production in pp collisions at root s=13 TeV with the ATLAS detector. Eur. Phys. J. C, 79(8), 666–31pp.
Abstract: This paper presents measurements of charged-particle distributions sensitive to the properties of the underlying event in events containing a Z boson decaying into a muon pair. The data were obtained using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 13 TeV with an integrated luminosity of 3.2 fb(-1). Distributions of the charged-particle multiplicity and of the charged-particle transverse momentum are measured in regions of the azimuth defined relative to the Z boson direction. The measured distributions are compared with the predictions of various Monte Carlo generators which implement different underyling event models. The Monte Carlo model predictions qualitatively describe the data well, but with some significant discrepancies.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Updated measurement of time-dependent CP-violating observables in B-s(0) -> J/psi K+K- decays. Eur. Phys. J. C, 79(8), 706–26pp.
Abstract: The decay-time-dependent CP asymmetry in B0 s. J/. K + K-decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 1.9 fb-1, collected with the LHCb detector at a centre-ofmass energy of 13 TeV in 2015 and 2016. Using a sample of approximately 117 000 signal decays with an invariant K + K-mass in the vicinity of the f( 1020) resonance, the CP-violating phase fs is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the B0 s-B0s system, s. The difference of the average B0 s and B0 meson decay widths, s-d, is determined using in addition a sample of B0. J/. K + p-decays. The values obtained are fs =-0.083 +/- 0.041 +/- 0.006 rad, s = 0.077 +/- 0.008 +/- 0.003 ps-1 and s-d = -0.0041 +/- 0.0024 +/- 0.0015 ps-1, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements of these quantities to date and are consistent with expectations based on the Standard Model and with a previous LHCb analysis of this decay using data recorded at centre-of-mass energies 7 and 8 TeV. Finally, the results are combined with recent results from B0 s. J/. p + p-decays obtained using the same dataset as this analysis, and with previous independent LHCb results.
|
Nebot, M., Botella, F. J., & Branco, G. C. (2019). Vacuum induced CP violation generating a complex CKM matrix with controlled scalar FCNC. Eur. Phys. J. C, 79(8), 711–23pp.
Abstract: We propose. a viable minimal model with spontaneous CP violation in the framework of a two Higgs doublet model. The model is based on a generalised Branco-Grimus-Lavoura model with a flavoured Z(2) symmetry, under which two of the quark families are even and the third one is odd. The lagrangian respects CP invariance, but the vacuum has a CP violating phase, which is able to generate a complex CKM matrix, with the rephasing invariant strength of CP violation compatible with experiment. The question of scalar mediated flavour changing neutral couplings is carefully studied. In particular we point out a deep connection between the generation of a complex CKM matrix from a vacuum phase and the appearance of scalar FCNC. The scalar sector is presented in detail, showing that the new scalars are necessarily lighter than 1 TeV. A complete analysis of the model including the most relevant constraints is performed, showing that it is viable and that it has definite implications for the observation of New Physics signals in, for example, flavour changing Higgs decays or the discovery of the new scalars at the LHC. We give special emphasis to processes like t -> hc, hu, as well as h -> bs, bd, which are relevant for the LHC and the ILC.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of root s=13TeV with the ATLAS experiment. Eur. Phys. J. C, 79(9), 733–45pp.
Abstract: Searches for scalar leptoquarks pair-produced in proton-proton collisions at root s = 13 TeV at the Large Hadron Collider are performed by the ATLAS experiment. A data set corresponding to an integrated luminosity of 36.1 fb(-1) is used. Final states containing two electrons or two muons and two or more jets are studied, as are states with one electron or muon, missing transverse momentum and two or more jets. No statistically significant excess above the Standard Model expectation is observed. The observed and expected lower limits on the leptoquark mass at 95% confidence level extend up to 1.29 TeV and 1.23 TeV for first-and second-generation leptoquarks, respectively, as postulated in the minimal Buchmuller-Ruckl-Wyler model, assuming a branching ratio into a charged lepton and a quark of 50%. In addition, measurements of particle-level fiducial and differential cross sections are presented for the Z -> ee, Z -> μμand t (t) over bar processes in several regions related to the search control regions. Predictions from a range of generators are compared with the measurements, and good agreement is seen for many of the observables. However, the predictions for the Z -> ll measurements in observables sensitive to jet energies disagree with the data.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2019). Measurements of CP asymmetries in charmless four-body Lambda(0)(b) and Xi(0)(b) decays. Eur. Phys. J. C, 79(9), 745–19pp.
Abstract: Asearch for CP violation in charmless four-body decays of Lambda(0)(b) and Xi(0)(b) baryons with a proton and three charged mesons in the final state is performed. To cancel out production and detection charge-asymmetry effects, the search is carried out by measuring the difference between the CP asymmetries in a charmless decay and in a decay with an intermediate charmed baryon with the same particles in the final state. The data sample used was recorded in 2011 and 2012 with the LHCb detector and corresponds to an integrated luminosity of 3 fb(-1). A total of 18 CP asymmetries are considered, either accounting for the full phase space of the decays or exploring specific regions of the decay kinematics. No significant CP-violation effect is observed in any of the measurements.
|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurement of the cross-section and charge asymmetry of W bosons produced in proton-proton collisions at root s=8 TeV with the ATLAS detector. Eur. Phys. J. C, 79(9), 760–25pp.
Abstract: This paper presents measurements of the W+->mu+nu and W-->mu-nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2fb(-1). The precision of the cross-section measurements varies between 0.8 and 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.
|
Akindinov, V. et al, Colomer, M., Gozzini, S. R., Hernandez-Rey, J. J., Khan Chowdhury, N. R., Thakore, T., et al. (2019). Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA. Eur. Phys. J. C, 79(9), 758–14pp.
Abstract: The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a 6 sigma\documentclass[12pt] resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible.
|