Dai, L. R., Pavao, R., Sakai, S., & Oset, E. (2019). tau(-) -> nu tau M1 M2, with M1, M2 pseudoscalar or vector mesons. Eur. Phys. J. A, 55(2), 20–22pp.
Abstract: .We perform a calculation of the -M1M2, with M1,M2 either pseudoscalar or vector mesons using the basic weak interaction and angular momentum algebra to relate the different processes. The formalism also leads to a different interpretation of the role played by G-parity in these decays. We also observe that, while PPp-wave production is compatible with chiral perturbation theory and experiment, VP and VVp-wave production is clearly incompatible with experiment and we develop the formalism also in this case, producing the VP or VV pairs in s-wave. We compare our results with experiment and other theoretical approaches for rates and invariant mass distributions and make predictions for unmeasured decays. We show the value of these reactions, particularly if the M1M2 mass distribution is measured, as a tool to learn about the meson-meson interaction and the nature of some resonances, coupling to two mesons, which are produced in such decays.
|
Dai, L. R., Wang, G. Y., Chen, X., Wang, E., Oset, E., & Li, D. M. (2019). The B+ -> J/phi omega K+ reaction and D*(D)over-bar* molecular states. Eur. Phys. J. A, 55(3), 36–7pp.
Abstract: We study the B+J/K+ reaction, and show that it is driven by the presence of two resonances, the X(3940) and X(3930), that are of molecular nature and couple most strongly to D*D*, but also to J/. Because of that, in the J/ mass distribution we find a peak related to the excitation of the resonances and a cusp with large strength at the D*D* threshold.
|
PANDA Collaboration(Barucca, G. et al), & Diaz, J. (2019). Precision resonance energy scans with the PANDA experiment at FAIR: Sensitivity study for width and line shape measurements of the X(3872). Eur. Phys. J. A, 55(3), 42–18pp.
Abstract: This paper summarises a comprehensive Monte Carlo simulation study for precision resonance energy scan measurements. Apart from the proof of principle for natural width and line shape measurements of very narrow resonances with PANDA, the achievable sensitivities are quantified for the concrete example of the charmonium-like X(3872) state discussed to be exotic, and for a larger parameter space of various assumed signal cross-sections, input widths and luminosity combinations. PANDA is the only experiment that will be able to perform precision resonance energy scans of such narrow states with quantum numbers of spin and parities that differ from JPC=1--.
|
Testov, D. et al, & Gadea, A. (2019). The 4pi highly-efficient light-charged-particle detector EUCLIDES, installed at the GALILEO array for in-beam gamma-ray spectroscopy. Eur. Phys. J. A, 55(4), 47–8pp.
Abstract: .In a fusion-evaporation reaction, nuclei are produced by evaporating light-charged particles and neutrons from the compound nucleus. Typically, a nucleus of interest is produced as a result of a part of the total cross-section and, in order to guarantee a good channel discrimination, a particle detector, like the EUCLIDES 4 Si-ball array, is necessary. EUCLIDES has been quoted in more than a hundred publications resulting from many experiments performed in combination with the EUROBALL and GASP -ray spectrometers. The present paper reports on the upgraded version of EUCLIDES, that is presently coupled to the new GALILEO -ray spectrometer, installed at the Laboratori Nazionali di Legnaro, INFN. The design, characteristics and performance of the EUCLIDES array are presented and discussed.
|
Lewandowski, L., Reiter, P., Birkenbach, B., Bruyneel, B., Clemente, E., Eberth, J., et al. (2019). Pulse-Shape Analysis and position resolution in highly segmented HPGe AGATA detectors. Eur. Phys. J. A, 55(5), 81–13pp.
Abstract: The performance of the Pulse-Shape Analysis (PSA) in AGATA HPGe detectors was investigated and improved employing a -ray source measurement based on e+e- annihilation radiation after decays of Na-22 by + decay. The first interaction positions of the two 511keV rays were determined and the connecting line of these two positions was compared to the known source position as a measure for the PSA performance. The position resolution and its dependence on the PSA parameters were investigated by varying most relevant input quantities: the charge carrier mobility of the holes, the response of the employed measuring electronics especially the preamplifier rise time. The relative statistical weight of charge signals and transient signals was scrutinized. The optimal distance metric of the grid-search algorithm and its impact on the position resolution were determined.
|
n_TOF Collaboration(Amaducci, S. et al), Domingo-Pardo, C., & Tain, J. L. (2019). Measurement of the U-235(n, f) cross section relative to the Li-6(n, t) and B-10(n,alpha) standards from thermal to 170 keV neutron energy range at n_TOF. Eur. Phys. J. A, 55(7), 120–19pp.
Abstract: .The U-235(n, f ) cross section was measured at n_TOF relative to Li-6(n, t) and B-10(n,alpha) , with high resolution ( L=183.49(2) m) and in a wide energy range (25meV-170keV) with 1.5% systematic uncertainty, making use of a stack of six samples and six silicon detectors placed in the neutron beam. This allowed us to make a direct comparison of the yields of the U-235(n, f ) and of the two reference reactions under the same experimental conditions, and taking into account the forward/backward emission asymmetry. A hint of an anomaly in the 10-30keV neutron energy range had been previously observed in other experiments, indicating a cross section systematically lower by several percent relative to major evaluations. The present results indicate that the cross section in the 9-18keV neutron energy range is indeed overestimated by almost 5% in the recently released evaluated data files ENDF/B-VIII.0 and JEFF3.3, as a consequence of a 7% overestimate in a single GMA node in the IAEA reference file. Furthermore, these new high-resolution data confirm the existence of resonance-like structures in the keV neutron energy region. The results here reported may lead to a reduction of the uncertainty in the 1-100keV neutron energy region. Finally, from the present data, a value of 249.7 +/- 1.4( stat )+/- 0.94( syst ) b<bold>eV has been extracted for the cross section integral between </bold>7.8 and 11eV, confirming the value of 247.5 +/- 3 b<bold>eV recently established as a standard</bold>.
|
Xu, S. S., Cui, Z. F., Chang, L., Papavassiliou, J., Roberts, C. D., & Zong, H. S. (2019). New perspective on hybrid mesons. Eur. Phys. J. A, 55(7), 113–6pp.
Abstract: We introduce a novel approach to the hybrid-meson (valence-gluon+quark+antiquark) bound-state problem in relativistic quantum field theory. Exploiting the existence of strong two-body correlations in the gluon-quark, q(g) = [gq], and gluon-antiquark, (q) over bar (g) = [g (q) over bar] channels, we argue that a sound description of hybrids can be obtained by solving a coupled pair of effectively two-body equations; and, consequently, that hybrids may be viewed as highly correlated q(g)(q) over bar <-> q (q) over bar (g) bound states. Analogies may be drawn between this picture of hybrid structure and that of baryons, in which diquark (quark+quark) correlations play a key role. The potential of this formulation is illustrated by calculating the spectrum of light-quark isovector hybrid mesons.
|
Aguilar, A. C. et al, & Papavassiliou, J. (2019). Pion and kaon structure at the electron-ion collider. Eur. Phys. J. A, 55(10), 190–15pp.
Abstract: Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the only previous electron-proton collider; and describe five key experimental measurements, enabled by the EIC and aimed at delivering fundamental insights that will generate concrete answers to the questions of how mass and structure arise in the pion and kaon, the Standard Model's NG modes, whose surprisingly low mass is critical to the evolution of our Universe.
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector. Eur. Phys. J. C, 79(1), 58–30pp.
Abstract: A search for doubly charged scalar bosons decaying into W boson pairs is presented. It uses a data sample from proton-proton collisions corresponding to an integrated luminosity of 36.1fb-1 collected by the ATLAS detector at the LHC at a centre-of-mass energy of 13TeV in 2015 and 2016. This search is guided by a model that includes an extension of the Higgs sector through a scalar triplet, leading to a rich phenomenology that includes doubly charged scalar bosons H +/-+/-. Those bosons are produced in pairs in proton-proton collisions and decay predominantly into electroweak gauge bosons H +/-+/- W +/- W +/-. Experimental signatures with several leptons, missing transverse energy and jets are explored. No significant deviations from the Standard Model predictions are found. The parameter space of the benchmark model is excluded at 95% confidence level for H +/-+/- bosons with masses between 200 and 220 GeV.
|
Debastiani, V. R., Sakai, S., & Oset, E. (2019). Considerations on the Schmid theorem for triangle singularities. Eur. Phys. J. C, 79(1), 69–13pp.
Abstract: We investigate the Schmid theorem, which states that if one has a tree level mechanism with a particle decaying to two particles and one of them decaying posteriorly to two other particles, the possible triangle singularity developed by the mechanism of elastic rescattering of two of the three decay particles does not change the cross section provided by the tree level. We investigate the process in terms of the width of the unstable particle produced in the first decay and determine the limits of validity and violation of the theorem. One of the conclusions is that the theorem holds in the strict limit of zero width of that resonance, in which case the strength of the triangle diagram becomes negligible compared to the tree level. Another conclusion, on the practical side, is that for realistic values of the width, the triangle singularity can provide a strength comparable or even bigger than the tree level, which indicates that invoking the Schmid theorem to neglect the triangle diagram stemming from elastic rescattering of the tree level should not be done. Even then, we observe that the realistic case keeps some memory of the Schmid theorem, which is visible in a peculiar interference pattern with the tree level.
|