KM3NeT Collaboration(Aiello, S. et al), Calvo, D., Coleiro, A., Colomer, M., Gozzini, S. R., Hernandez-Rey, J. J., et al. (2019). KM3NeT front-end and readout electronics system: hardware, firmware, and software. J. Astron. Telesc. Instrum. Syst., 5(4), 046001–15pp.
Abstract: The KM3NeT research infrastructure being built at the bottom of the Mediterranean Sea will host water-Cherenkov telescopes for the detection of cosmic neutrinos. The neutrino telescopes will consist of large volume three-dimensional grids of optical modules to detect the Cherenkov light from charged particles produced by neutrino-induced interactions. Each optical module houses 31 3-in. photomultiplier tubes, instrumentation for calibration of the photomultiplier signal and positioning of the optical module, and all associated electronics boards. By design, the total electrical power consumption of an optical module has been capped at seven Watts. We present an overview of the front-end and readout electronics system inside the optical module, which has been designed for a 1-ns synchronization between the clocks of all optical modules in the grid during a life time of at least 20 years. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
|
KM3NeT Collaboration(Aiello, S. et al), Barrios-Marti, J., Calvo, D., Coleiro, A., Colomer, M., Gozzini, S. R., et al. (2019). Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astropart Phys., 111, 100–110.
Abstract: KM3NeT will be a network of deep-sea neutrino telescopes in the Mediterranean Sea. The KM3NeT/ARCA detector, to be installed at the Capo Passero site (Italy), is optimised for the detection of high-energy neutrinos of cosmic origin. Thanks to its geographical location on the Northern hemisphere, KM3NeT/ARCA can observe upgoing neutrinos from most of the Galactic Plane, including the Galactic Centre. Given its effective area and excellent pointing resolution, KM3NeT/ARCA will measure or significantly constrain the neutrino flux from potential astrophysical neutrino sources. At the same time, it will test flux predictions based on gamma-ray measurements and the assumption that the gamma-ray flux is of hadronic origin. Assuming this scenario, discovery potentials and sensitivities for a selected list of Galactic sources and to generic point sources with an E(-2 )spectrum are presented. These spectra are assumed to be time independent. The results indicate that an observation with 3 sigma significance is possible in about six years of operation for the most intense sources, such as Supernovae Remnants RX J1713.7-3946 and Vela Jr. If no signal will be found during this time, the fraction of the gamma-ray flux coming from hadronic processes can be constrained to be below 50% for these two objects.
|
Karan, A., Sinha, R., & Mandal, R. (2019). Testing WW gamma vertex in radiative muon decay. Phys. Rev. D, 99(3), 033006–9pp.
Abstract: Large numbers of muons will be produced at facilities developed to probe the lepton-flavor-violating process μ-> e gamma. We show that by constructing a suitable asymmetry, radiative muon decay μ-> e gamma nu(mu)(nu) over bar (e) can also be used to test the WW gamma vertex at such facilities. The process has two missing neutrinos in the final state, and upon integrating their momenta the partial differential decay rate shows no radiation-amplitude zero. However, we establish that an easily separable part of the normalized differential decay rate that is odd under the exchange of photon and electron energies does have a zero in the case of the standard model (SM). This new type of zero has hitherto not been studied in the literature. A suitably constructed asymmetry using this fact enables a sensitive probe for the WW gamma vertex beyond the SM. With a simplistic analysis, we find that the C- and P-conserving dimension-four WW gamma vertex can be probed at O(10(-2)) with a satisfactory significance level.
|
Kang, S. K., Popov, O., Srivastava, R., Valle, J. W. F., & Vaquera-Araujo, C. A. (2019). Scotogenic dark matter stability from gauged matter parity. Phys. Lett. B, 798, 135013–10pp.
Abstract: We explore the idea that dark matter stability results from the presence of a matter-parity symmetry, arising naturally as a consequence of the spontaneous breaking of an extended SU(3) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N) electroweak gauge symmetry with fully gauged B-L. Using this framework we construct a theory for scotogenic dark matter and analyze its main features.
|
Jiang, S. J., Sakai, S., Liang, W. H., & Oset, E. (2019). The chi c J decay to phi K*(K)over-bar, phi h(1)(1380) testing the nature of axial vector meson resonances. Phys. Lett. B, 797, 134831–5pp.
Abstract: We perform a theoretical study of the chi(cJ) -> phi K*(K) over bar -> phi K pi(K) over bar reaction taking into account the K*(K) over bar final state interaction, which in the chiral unitary approach is responsible, together with its coupled channels, for the formation of the low lying axial vector mesons, in this case the h(1)(1380) given the selection of quantum numbers. Based on this picture we can easily explain why in the chi(c0) decay the h(1)(1380) resonance is not produced, and, in the case of chi(c1) and chi(c2) decay, why a dip in the K+ pi K-0(-) mass distribution appears in the 1550-1600 MeV region, that in our picture comes from a destructive interference between the tree level mechanism and the rescattering that generates the h(1)(1380) state. Such a dip is not reproduced in pictures where the nominal h(1)(1380) signal is added incoherently to a background, which provides support to the picture where the resonance appears from rescattering of vector-pseudoscalar components.
|
Ilner, A., Blair, J., Cabrera, D., Markert, C., & Bratkovskaya, E. (2019). Probing hot and dense nuclear matter with K*, (K)over-bar* vector mesons. Phys. Rev. C, 99(2), 024914–22pp.
Abstract: We investigate the possibility of probing the hot and dense nuclear matter-created in relativistic heavyion collisions (HICs)-with strange vector mesons (K*, (K) over bar*). Our analysis is based on the nonequilibrium parton-hadron-string dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees of freedom and describes the full dynamics of HIC on a microscopic level-starting from the primary nucleon-nucleon collisions to the formation of the strongly interacting quark gluon plasma (QGP), followed by dynamical hadronization of (anti)quarks as well as final hadronic elastic and inelastic interactions. This allows us to study the K* and (K) over bar* meson formation from the QGP as well as the in-medium effects related to the modification of their spectral properties during the propagation through the dense and hot hadronic environment in the expansion phase. We employ relativistic Breit-Wigner spectral functions for the K*, (K) over bar* mesons with self-energies obtained from a self-consistent coupled-channel G-matrix approach to study the role of in-medium effects on the K* and (K) over bar* meson dynamics in heavy-ion collisions from FAIR/NICA to LHC energies. According to our analysis most of the final K* /(K) over bar*'s, that can be observed experimentally by reconstruction of the invariant mass of pi + K((K) over bar) pairs, are produced during the late hadronic phase and originate dominantly from the K((K) over bar) + pi -> K*( (K) over bar*) formation channel. The amount of K*/ (K) over bar*'s, originating from the QGP channel is comparatively small even at LHC energies and those K* /(K) over bar*'s can hardly be reconstructed experimentally due to the rescattering of final pions and (anti)kaons. This mirrors the results from our previous study on the strange vector-meson production in heavy-ion collisions at RHIC energies. We demonstrate that K* /(K) over bar* in-medium effects should be visible at FAIR/NICA and BES RHIC energies, where the production of K* /(K) over bar*'s occurs at larger net-baryon densities. Finally, we present the experimental procedures to extract the information on the resonance masses and widths by fitting the final mass spectra at LHC energies.
|
Ikeno, N., Dias, J. M., Liang, W. H., & Oset, E. (2019). chi(c1) decays into a pseudoscalar meson and a vector-vector molecule. Phys. Rev. D, 100(11), 114011–7pp.
Abstract: We evaluate ratios of the chi(c1) decay rates to eta (eta', K-) and one of the f(0) (1370), f(0) (1710), f(2) (1270), f(2)'(1525), K-2*(1430) resonances, which in the local hidden gauge approach are dynamically generated from the vector-vector interaction. With the simple assumption that the chi(c1) is a singlet of SU(3), and the input from the study of these resonances as vector-vector molecular states, we describe the experimental ratio B(chi(c1)-> eta f(2) (1270))/B(chi(c1) -> eta'f(2)' (1525)) and make predictions for six more ratios that can be tested in future experiments.
|
Husek, T., Goudzovski, E., & Icampf, K. (2019). Precise Determination of the Branching Ratio of the Neutral-Pion Dalitz Decay. Phys. Rev. Lett., 122(2), 022003–6pp.
Abstract: We provide a new value for the ratio R = Gamma(pi(0) -> e(+)e(-)gamma(gamma))/Gamma(pi(0) -> gamma gamma) = 11.978(6) x 10(-3), which is by 2 orders of magnitude more precise than the current Particle Data Group average. It is obtained using the complete set of the next-to-leading-order radiative corrections in the QED sector, and incorporates up-to-date values of the pi(0)-transition-form-factor slope. The ratio R translates into the branching ratios of the two main pi(0) decay modes: B(pi(0) -> gamma gamma) = 98.8131(6)% and B(pi(0) -> e(+)e(-)gamma(gamma)) = 1.1836(6)%.
|
Hernandez, P., Pena, C., & Romero-Lopez, F. (2019). Large Nc scaling of meson masses and decay constants. Eur. Phys. J. C, 79(10), 865–13pp.
Abstract: We perform an ab initio calculation of the Nc scaling of the low-energy couplings of the chiral Lagrangian of low-energy strong interactions, extracted from the mass dependence of meson masses and decay constants. We compute these observables on the lattice with four degenerate fermions, Nf=4, and varying number of colours, Nc=3-6, at a lattice spacing of a similar or equal to 0.075 fm. We find good agreement with the expected Nc scaling and measure the coefficients of the leading and subleading terms in the large Nc expansion. From the subleading Nc corrections, we can also infer the Nf dependence, that we use to extract the value of the low-energy couplings for different values of Nf. We find agreement with previous determinations at Nc=3 and Nf=2,3 and also, our results support a strong paramagnetic suppression of the chiral condensate in moving from Nf=2 to Nf=3.
|
Hernandez, P., Jones-Perez, J., & Suarez-Navarro, O. (2019). Majorana vs pseudo-Dirac neutrinos at the ILC. Eur. Phys. J. C, 79(3), 220–11pp.
Abstract: Neutrino masses could originate in seesaw models testable at colliders, with light mediators and an approximate lepton number symmetry. The minimal model of this type contains two quasi-degenerate Majorana fermions forming a pseudo-Dirac pair. An important question is to what extent future colliders will have sensitivity to the splitting between the Majorana components, since this quantity signals the breaking of lepton number and is connected to the light neutrino masses. We consider the production of these neutral heavy leptons at the ILC, where their displaced decays provide a golden signal: a forward-backward charge asymmetry, which depends crucially on the mass splitting between the two Majorana components. We show that this observable can constrain the mass splitting to values much lower than current bounds from neutrinoless double beta decay and natural loop corrections.
|