Gonzalez, P. (2015). Charmonium description from a generalized screened potential model. Phys. Rev. D, 92(1), 014017–11pp.
Abstract: A generalized screened potential model (GSPM), recently developed to study the bottomonium spectrum, is applied to the calculation of charmonium masses and electromagnetic widths. The presence in the GSPM of more quark-antiquark bound states than in conventional nonscreened potential models, allows for the assignment of GSPM states to cataloged nonconventional J(++) charmonium resonances as well as for the prediction of new (noncataloged) J(++) states. The results obtained seem to indicate that a reasonable overall description of J(++) charmonium resonances is feasible.
|
Gomez-Izquierdo, J. C., Gonzalez-Canales, F., & Mondragon, M. (2015). Q(6) as the flavor symmetry in a non-minimal SUSY SU(5) model. Eur. Phys. J. C, 75(5), 221–16pp.
Abstract: We present a non-minimal renormalizable SUSY SU(5) model, with extended Higgs sector and right-handed neutrinos, where the flavor sector exhibits a Q(6) flavor symmetry. We analyzed the simplest version of this model, in which R-parity is conserved and the right-handed neutrino masses in the flavor doublet are considered with and without degeneracy. We find the generic form of the mass matrices both in the quark and lepton sectors. We reproduce, according to current data, the mixing in the CKM matrix. In the leptonic sector, in the general case where the right-handed neutrino masses are not degenerate, we find that the values for the solar, atmospheric, and reactor mixing angles are in very good agreement with the experimental data, both for a normal and an inverted hierarchy. In the particular casewhere the right-handed neutrinos masses are degenerate, the model predicts a strong inverted hierarchy spectrum and a sum rule among the neutrino masses. In this case the atmospheric and solar angles are in very good agreement with experimental data, and the reactor one is different from zero, albeit too small (theta(lth)(13) similar to 3.38.). This value constitutes a lower bound for.13 in the general case. We also find the range of the values for the neutrino masses in each case.
|
Ghosh, P., Lopez-Fogliani, D. E., Mitsou, V. A., Muñoz, C., & Ruiz de Austri, R. (2015). Hunting physics beyond the standard model with unusual W-+/- and Z decays. Phys. Rev. D, 91(3), 035020–8pp.
Abstract: Nonstandard on-shell decays of W-+/- and Z bosons are possible within the framework of extended supersymmetric models, i.e., with singlet states and/or new couplings compared to the minimal supersymmetric standard model. These modes are typically encountered in regions of the parameter space with light singlet-like scalars, pseudoscalars, and neutralinos. In this letter we emphasize how these states can lead to novel signals at colliders from Z- or W-+/--boson decays with prompt or displaced multileptons/tau jets/jets/photons in the final states. These new modes would give distinct evidence of new physics even when direct searches remain unsuccessful. We discuss the possibilities of probing these new signals using the existing LHC run-I data set. We also address the same in the context of the LHC run-II, as well as for the future colliders. We exemplify our observations with the “mu from v” supersymmetric standard model, where three generations of right-handed neutrino superfields are used to solve shortcomings of the minimal supersymmetric standard model. We also extend our discussion for other variants of supersymmetric models that can accommodate similar signatures.
|
Geng, L. S., Ren, X. L., Zhou, Y., Chen, H. X., & Oset, E. (2015). S-wave KK* interactions in a finite volume and the f(1)(1285). Phys. Rev. D, 92(1), 014029–9pp.
Abstract: Lattice QCD simulations provide a promising way to disentangle different interpretations of hadronic resonances, which might be of particular relevance to understand the nature of the so-called XYZ particles. Recent studies have shown that in addition to the well-established naive quark model picture, the axial-vector meson f(1)(1285) can also be understood as a dynamically generated state built upon the KK* interaction. In this work, we calculate the energy levels of the KK* system in the f(1)(1285) channel in finite volume using the chiral unitary approach. We propose to calculate the loop function in the dimensional regularization scheme, which is equivalent to the hybrid approach adopted in previous studies. We also study the inverse problem of extracting the bound state information from synthetic lattice QCD data and comment on the difference between our approach and the Luscher method.
|
Garzon, E. J., & Xie, J. J. (2015). Effects of a Nc(c)over-bar* resonance with hidden charm in the pi(-)p -> D-Sigma(+)(c) reaction near threshold. Phys. Rev. C, 92(3), 035201–4pp.
Abstract: We study the effect of a hidden charm nuclear excited state N-c (c) over bar* in the pi(-)p -> D-Sigma(+)(c) reaction near threshold using an effective Lagrangian approach. We calculate the background contribution of the t and u channels by the D*(0) vector meson exchange and Sigma(++)(c) intermediate state, respectively. We show that the consideration of a N-c (c) over bar* resonance provides an enhancement of the total cross section close to the reaction threshold. We also evaluate the differential cross section for different energies and we study the angle dependence. It is expected that our model calculations will be tested in future experiments.
|
Garzon, E. J., & Oset, E. (2015). Mixing of pseudoscalar-baryon and vector-baryon in the J(P)=1/2(-) sector and the N* (1535) and N* (1650) resonances. Phys. Rev. C, 91(2), 025201–7pp.
Abstract: We study the meson-baryon interaction with J(P) = 1/2 using the hidden-gauge Lagrangians and mixing pseudoscalar meson-baryon with the vector meson-baryon states in a coupled channels scheme with pi N, eta N, K Lambda, K Sigma, rho N, and pi Delta (d wave). We fit the subtraction constants of each channel to the S-11 partial wave amplitude of the pi N scattering data extracted from the partial wave analysis of the George Washington group. We find two poles that we associate to the N*(1535) and the N*(1650) resonances, with negative subtraction constants of natural size, and compare the results with empirical determinations of these pole positions. We calculate the branching ratios for the different channels of each resonance and we find a good agreement with the experimental data. The cross section for the pi(-)p -> eta n scattering is also evaluated and compared with experiment.
|
Gariazzo, S., Lopez-Honorez, L., & Mena, O. (2015). Primordial power spectrum features and f(NL) constraints. Phys. Rev. D, 92(6), 063510–12pp.
Abstract: The simplest models of inflation predict small non-Gaussianities and a featureless power spectrum. However, there exist a large number of well-motivated theoretical scenarios in which large non-Gaussianties could be generated. In general, in these scenarios the primordial power spectrum will deviate from its standard power law shape. We study, in a model-independent manner, the constraints from future large-scale structure surveys on the local non-Gaussianity parameter f(NL) when the standard power law assumption for the primordial power spectrum is relaxed. If the analyses are restricted to the large-scale-dependent bias induced in the linear matter power spectrum by non-Gaussianites, the errors on the f(NL) parameter could be increased by 60% when exploiting data from the future DESI survey, if dealing with only one possible dark matter tracer. In the same context, a nontrivial bias vertical bar delta f(NL)vertical bar similar to 2.5 could be induced if future data are fitted to the wrong primordial power spectrum. Combining all the possible DESI objects slightly ameliorates the problem, as the forecasted errors on f(NL) would be degraded by 40% when relaxing the assumptions concerning the primordial power spectrum shape. Also, the shift on the non-Gaussianity parameter is reduced in this case, vertical bar delta f(NL)vertical bar similar to 1.6. The addition of cosmic microwave background priors ensures robust future f(NL) bounds, as the forecasted errors obtained including these measurements are almost independent on the primordial power spectrum features, and vertical bar delta f(NL)vertical bar similar to 0.2, close to the standard single-field slow-roll paradigm prediction.
|
Garcia-Recio, C., Hidalgo-Duque, C., Nieves, J., Salcedo, L. L., & Tolos, L. (2015). Compositeness of the strange, charm, and beauty odd parity Lambda states. Phys. Rev. D, 92(3), 034011–14pp.
Abstract: We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to Lambda-like states in the strange, charm, and beauty sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use a SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two J(P) = 1/2- and one J(P) = 3/2(-) Lambda states. We find that the. states which are bound states (the three Lambda(b)) or narrow resonances [one Lambda(1405) and one Lambda(c)(2595)] are well described as molecular states composed of s-wave meson-baryon pairs. The 1/2(-) wide Lambda(1405) and Lambda(c)(2595) as well as the 3/2(-) Lambda(1520) and Lambda(c)(2625) states display smaller compositeness so they would require new mechanisms, such as d-wave interactions.
|
Gago, A. M., Hernandez, P., Jones-Perez, J., Losada, M., & Moreno Briceño, A. (2015). Probing the Type I Seesaw mechanism with displaced vertices at the LHC. Eur. Phys. J. C, 75(10), 470–10pp.
Abstract: The observation of Higgs decays into heavy neutrinos would be strong evidence for new physics associated to neutrino masses. In this work we propose a search for such decays within the Type I Seesaw model in the few-GeV mass range via displaced vertices. Using 300 fb(-1) of integrated luminosity, at 13 TeV, we explore the region of parameter space where such decays are measurable. We show that, after imposing pseudorapidity cuts, there still exists a region where the number of events is larger than O(10). We also find that conventional triggers can greatly limit the sensitivity of our signal, so we display several relevant kinematical distributions which might aid in the optimization of a dedicated trigger selection.
|
Fuster, J., Garcia, I., Gomis, P., Perello, M., Ros, E., & Vos, M. (2015). Study of single top production at high energy electron positron colliders. Eur. Phys. J. C, 75(5), 223–7pp.
Abstract: The effect of single top production on the study of top quark pair production in future high energy electron-positron colliders is evaluated. The rate of the single top quark production process is sizeable throughout a large range of center-of-mass energies and the final state cannot easily be distinguished from the dominant pair production process. We discuss the impact on the top quark mass extraction from a scan through the pair production threshold and the determination of top quark form factors in the continuum. These results advocate for the exploration of the inclusive e(+) e(-) -> W(+)bW(-)b(-) process, that includes both top quark pair and single top quark production.
|