Hinarejos, M., Bañuls, M. C., & Perez, A. (2015). Wigner formalism for a particle on an infinite lattice: dynamics and spin. New J. Phys., 17, 013037–16pp.
Abstract: The recently proposed Wigner function for a particle in an infinite lattice (Hinarejos M, Banuls MC and Perez A 2012 New J. Phys. 14 103009) is extended here to include an internal degree of freedom as spin. This extension is made by introducing a Wigner matrix. The formalism is developed to account for dynamical processes, with or without decoherence. We show explicit solutions for the case of Hamiltonian evolution under a position-dependent potential, and for evolution governed by a master equation under some simple models of decoherence, for which the Wigner matrix formalism is well suited. Discrete processes are also discussed. Finally, we discuss the possibility of introducing a negativity concept for the Wigner function in the case where the spin degree of freedom is included.
|
Hiller Blin, A. N., Ledwig, T., & Vicente Vacas, M. J. (2015). Chiral dynamics in the (gamma)over-right-arrowp -> p pi(0) reaction. Phys. Lett. B, 747, 217–222.
Abstract: We investigate the neutral pion photoproduction on the proton near threshold in covariant chiral perturbation theory with the explicit inclusion of A degrees of freedom. This channel is specially sensitive to chiral dynamics and the advent of very precise data from the Mainz microtron has shown the limits of the convergence of the chiral series for both the heavy baryon and the covariant approaches. We show that the inclusion of the Delta resonance substantially improves the convergence leading to a good agreement with data for a wider range of energies.
|
Hiller Blin, A. N., Gutsche, T., Ledwig, T., & Lyubovitskij, V. E. (2015). Hyperon forward spin polarizability gamma(0) in baryon chiral perturbation theory. Phys. Rev. D, 92(9), 096004–9pp.
Abstract: We present the calculation of the hyperon forward spin polarizability gamma(0) using manifestly Lorentz-covariant baryon chiral perturbation theory including the intermediate contribution of the spin-3/2 states. As at the considered order the extraction of. 0 is a pure prediction of chiral perturbation theory, the obtained values are a good test for this theory. After including explicitly the decuplet states, our SU(2) results have a very good agreement with the experimental data and we extend our framework to SU(3) to give predictions for the hyperons'. 0 values. Prominent are the Sigma(-) and Xi(-) baryons as their photon transition to the decuplet is forbidden in SU(3) symmetry and therefore they are not sensitive to the explicit inclusion of the decuplet in the theory.
|
Hidalgo-Duque, C., & Llanes-Estrada, F. J. (2015). Soft interactions in jet quenching. Int. J. Mod. Phys. A, 30(13), 1550067–25pp.
Abstract: We study the collisional aspects of jet quenching in a high-energy nuclear collision, especially in the final state pion gas. The jet has a large energy, and acquires momentum transverse to its axis more effectively by multiple soft collisions than by few hard scatterings (as known from analogous systems such as J/psi production at Hera). Such regime of large E and small momentum transfer corresponds to Regge kinematics and is characteristically dominated by the pomeron. From this insight we estimate the jet quenching parameter in the hadron medium (largely a pion gas) at the end of the collision, which is naturally small and increases with temperature in line with the gas density and compare it to the jet quenching parameter obtained within the quark-gluon plasma (QGP) phase in widely known perturbative approximations. The physics in the quark-gluon plasma/liquid phase is less obvious, and here we revisit a couple of simple estimates that suggest indeed that the pomeron-mediated interactions are very relevant and should be included in analysis of the jet quenching parameter. Finally, since the occasional hard collisions produce features characteristic of a Levy flight in the q(perpendicular to)(2) plane perpendicular to the jet axis, we suggest one- and two-particle q perpendicular to correlations as interesting experimental probes sensitive to the nature (softness versus hardness) of the interactions of a jet inside the QGP.
|
Hernandez, P., Kekic, M., Lopez-Pavon, J., Racker, J., & Rius, N. (2015). Leptogenesis in GeV-scale seesaw models. J. High Energy Phys., 10(10), 067–34pp.
Abstract: We revisit the production of leptonic asymmetries in minimal extensions of the Standard Model that can explain neutrino masses, involving extra singlets with Majorana masses in the GeV scale. We study the quantum kinetic equations both analytically, via a perturbative expansion up to third order in the mixing angles, and numerically. The analytical solution allows us to identify the relevant CP invariants, and simplifies the exploration of the parameter space. We find that sizeable lepton asymmetries are compatible with non-degenerate neutrino masses and measurable active-sterile mixings.
|
Helo, J. C., Hirsch, M., Ota, T., & Pereira dos Santos, F. A. (2015). Double beta decay and neutrino mass models. J. High Energy Phys., 05(5), 092–40pp.
Abstract: Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. Our discussion is general for models based on the SM group but does not cover models with an extended gauge. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.
|
Helo, J. C., & Hirsch, M. (2015). LHC dijet constraints on double beta decay. Phys. Rev. D, 92(7), 073017–7pp.
Abstract: We use LHC dijet data to derive constraints on neutrinoless double beta decay. Upper limits on cross sections for the production of “exotic” resonances, such as a right-handed W boson or a diquark, can be converted into lower limits on the double beta decay half-life for fixed choices of other parameters. Constraints derived from run-I data are already surprisingly strong and complementary to results from searches using same-sign dileptons plus jets. For the case of the left-right symmetric model, in case no new resonance is found in future runs of the LHC and assuming g(L) = g(R), we estimate a lower limit on the double beta decay half-life larger than 10(27) yr can be derived from future dijet data, except in the window of relatively light right-handed neutrino masses in the range 0.5 MeV to 50 GeV. Part of this mass window will be tested in the upcoming SHiP experiment. We also discuss current and future limits on possible scalar diquark contributions to double beta decay that can be derived from dijet data.
|
HADES Collaboration(Agakishiev, G. et al), Diaz, J., & Gil, A. (2015). Study of the quasi-free np -> np pi(+)pi(-) reaction with a deuterium beam at 1.25 GeV/nucleon. Phys. Lett. B, 750, 184–193.
Abstract: The tagged quasi-free np -> np pi(+)pi(-) reaction has been studied experimentally with the High Acceptance Di-Electron Spectrometer (HADES) at GSI at a deuteron incident beam energy of 1.25 GeV/nucleon (root S similar to 2.42 GeV/c for the quasi-free collision). For the first time, differential distributions of solid statistics for pi(+)pi(-) production in np collisions have been collected in the region corresponding to the large transverse momenta of the secondary particles. The invariant mass and angular distributions for the np -> np pi(+)pi(-) reaction are compared with different models. This comparison confirms the dominance of the t-channel with Delta Delta contribution. It also validates the changes previously introduced in the Valencia model to describe two-pion production data in other isospin channels, although some deviations are observed, especially for the pi(+)pi(-) invariant mass spectrum. The extracted total cross section is also in much better agreement with this model. Our new measurement puts useful constraints for the existence of the conjectured dibaryon resonance at mass M similar to 2.38 GeV and with width Gamma similar to 70 MeV. (C) 2015 The Authors. Published by Elsevier B.V.
|
Grkovski, M., Brzezinski, K., Cindro, V., Clinthorne, N. H., Kagan, H., Lacasta, C., et al. (2015). Evaluation of a high resolution silicon PET insert module. Nucl. Instrum. Methods Phys. Res. A, 788, 86–94.
Abstract: Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm(2) pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (20) geometry with a Jaszczak phantom (rod diameters of 12-4.8 mm) Filled with F-18-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).
|
Gonzalez-Sprinberg, G. A., & Vidal, J. (2015). The top quark right coupling in the tbW-vertex. Eur. Phys. J. C, 75(12), 615–11pp.
Abstract: The most general parametrization of the tbW vertex includes a right coupling V-R that is zero at tree level in the standard model. This quantity may be measured at the Large Hadron Collider where the physics of the top decay is currently investigated. This coupling is present in new physics models at tree level and/or through radiative corrections, so its measurement can be sensitive to non-standard physics. In this paper we compute the leading electroweak and QCD contributions to the top V-R coupling in the standard model. This value is the starting point in order to separate the standard model effects and, then, search for new physics. We also propose observables that can be addressed at the LHC in order to measure this coupling. These observables are defined in such a way that they do not receive tree level contributions from the standard model and are directly proportional to the right coupling. Bounds on new physics models can be obtained through the measurements of these observables.
|