LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Measurement of the forward-backward asymmetry in Z/gamma* -> mu(+)mu(-) decays and determination of the effective weak mixing angle. J. High Energy Phys., 11(11), 190–19pp.
Abstract: The forward-backward charge asymmetry for the process q (q) over bar -> Z/gamma* -> mu(+)mu(-) is measured as a function of the invariant mass of the dimuon system. Measurements are performed using proton proton collision data collected with the LHCb detector at root s = 7 and 8 TeV, corresponding to integrated luminosities of 1 fb(-1) and 2 fb(-2) respectively. Within the Standard Model the results constrain the effective electroweak mixing angle to be
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Measurement of forward J/psi production cross-sections in pp collisions at root s=13 TeV. J. High Energy Phys., 10(10), 172–29pp.
Abstract: The production of J/psi mesons in proton-proton collisions at a centre-of-mass energy of root s = 13 TeV is studied with the LHCb detector. Cross-section measurements are performed as a function of the transverse momentum p(T) and the rapidity y of the J/psi meson in the region p(T) < 14 GeV/c and 2.0 < y < 4.5, for both prompt J/psi mesons and J/psi mesons from b-hadron decays. The production cross-sections integrated over the kinematic coverage are 15.30 +/- 0.03 +/- 0.86 μb for prompt J/psi and 2.34 +/- 0.01 +/- 0.13 μb for J/psi from b-hadron decays, assuming zero polarization of the J/psi meson. The first uncertainties are statistical and the second systematic. The cross-section reported for J/psi mesons from b-hadron decays is used to extrapolate to a total b<(b)over bar> cross-section. The ratios of the cross-sections with respect to root s = 8 TeV are also determined.
|
Lazaries, G., & Pallis, C. (2015). Shift symmetry and Higgs inflation in supergravity with observable gravitational waves. J. High Energy Phys., 11(11), 114–28pp.
Abstract: We demonstrate how to realize within supergravity a novel chaotic-type inflationary scenario driven by the radial parts of a conjugate pair of Higgs superfields causing the spontaneous breaking of a grand unified gauge symmetry at a scale assuming the value of the supersymmetric grand unification scale. The superpotential is uniquely determined at the renormalizable level by the gauge symmetry and a continuous R symmetry. We select two types of Kahler potentials, which respect these symmetries as well as an approximate shift symmetry. In particular, they include in a logarithm a dominant shift-symmetric term proportional to a parameter c together with a small term violating this symmetry and characterized by a parameter c(+). In both cases, imposing a lower bound on c, inflation can be attained with subplanckian values of the original inflaton, while the corresponding effective theory respects perturbative unitarity for r +/- = c(+)/c_ <= 1. These inflationary models do not lead to overproduction of cosmic defects, are largely independent of the one-loop radiative corrections and accommodate, for natural values of r +/-, observable gravitational waves consistently with all the current observational data. The inflaton mass is mostly confined in the range (3.7 – 8.1) x 10(10) GeV.
|
Kosmas, T. S., Miranda, O. G., Papoulias, D. K., Tortola, M., & Valle, J. W. F. (2015). Probing neutrino magnetic moments at the Spallation Neutron Source facility. Phys. Rev. D, 92(1), 013011–12pp.
Abstract: Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrinonucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of chi(2) analysis employing realistic nuclear structure calculations in the context of the quasiparticle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for standard model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge radius. We illustrate our results for various choices of experimental setup and target material.
|
Kosmas, T. S., Miranda, O. G., Papoulias, D. K., Tortola, M., & Valle, J. W. F. (2015). Sensitivities to neutrino electromagnetic properties at the TEXONO experiment. Phys. Lett. B, 750, 459–465.
Abstract: The possibility of measuring neutral-current coherent elastic neutrino nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.
|
Karagiannakis, N., Lazarides, G., & Pallis, C. (2015). Probing the hyperbolic branch/focus point region of the constrained minimal supersymmetric standard model with generalized Yukawa quasiunification. Phys. Rev. D, 92(8), 085018–15pp.
Abstract: We analyze the parametric space of the constrained minimal supersymmetric standard model with μ> 0 supplemented by a generalized asymptotic Yukawa coupling quasiunification condition which yields acceptable masses for the fermions of the third family. We impose constraints from the cold dark matter abundance in the Universe and its direct-detection experiments, the B physics, as well as the masses of the sparticles and the lightest neutral CP-even Higgs boson. Fixing the mass of the latter to its central value from the LHC and taking 40 less than or similar to tan beta less than or similar to 50, we find a relatively wide allowed parameter space with -11 less than or similar to A(0)/M-1/2 less than or similar to 15 and a mass of the lightest sparticle in the range (0.09-1.1) TeV. This sparticle is possibly detectable by the present cold dark matter direct search experiments. The required fine-tuning for the electroweak symmetry breaking is much milder than the one needed in the neutralino-stau coannihilation region of the same model.
|
Kakizaki, M., Park, E. K., Park, J. H., & Santaa, A. (2015). Phenomenological constraints on light mixed sneutrino dark matter scenarios. Phys. Lett. B, 749, 44–49.
Abstract: In supersymmetric models with Dirac neutrinos, the lightest sneutrino can be a good thermal dark matter candidate when the soft sneutrino trilinear parameter is large. In this paper, we focus on scenarios where the mass of the mixed sneutrino LSP is of the order of GeV so the sneutrino dark matter is still viable complying with the limits by current and near future direct detection experiments. We investigate phenomenological constraints in the parameter space of the models, as well as the vacuum stability bound. Finally, we show that the allowed regions can be explored by measuring Higgs boson properties at future collider experiments.
|
Ilisie, V. (2015). New Barr-Zee contributions to (g-2)(mu) in two-Higgs-doublet models. J. High Energy Phys., 04(4), 077–27pp.
Abstract: We study the contribution of new sets of two-loop Barr-Zee type diagrams to the anomalous magnetic moment of the muon within the two-Higgs-doublet model framework. We show that some of these contributions can be quite sizeable for a large region of the parameter space and can significantly reduce, and in some cases even explain, the discrepancy between the theoretical prediction and the experimentally measured value of this observable. Analytical expressions are given for all the calculations performed in this work.
|
IGISOL Collaboration(Zakari-Issoufou, A. A. et al), Algora, A., Tain, J. L., Valencia, E., Agramunt, J., Estevez, E., et al. (2015). Total Absorption Spectroscopy Study of Rb-92 Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape. Phys. Rev. Lett., 115(10), 102503–6pp.
Abstract: The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. Rb-92 makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied Rb-92 decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.
|
Hueso-Gonzalez, F., Vijande, J., Ballester, F., Perez-Calatayud, J., & Siebert, F. A. (2015). A simple analytical method for heterogeneity corrections in low dose rate prostate brachytherapy. Phys. Med. Biol., 60(14), 5455–5469.
Abstract: In low energy brachytherapy, the presence of tissue heterogeneities contributes significantly to the discrepancies observed between treatment plan and delivered dose. In this work, we present a simplified analytical dose calculation algorithm for heterogeneous tissue. We compare it with Monte Carlo computations and assess its suitability for integration in clinical treatment planning systems. The algorithm, named as RayStretch, is based on the classic equivalent path length method and TG-43 reference data. Analytical and Monte Carlo dose calculations using Penelope2008 are compared for a benchmark case: a prostate patient with calcifications. The results show a remarkable agreement between simulation and algorithm, the latter having, in addition, a high calculation speed. The proposed analytical model is compatible with clinical real-time treatment planning systems based on TG-43 consensus datasets for improving dose calculation and treatment quality in heterogeneous tissue. Moreover, the algorithm is applicable for any type of heterogeneities.
|