Algora, A. et al, Valencia, E., Tain, J. L., Jordan, M. D., Agramunt, J., Rubio, B., et al. (2014). Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure. Nucl. Data Sheets, 120, 12–15.
Abstract: An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of Br-87,Br-88 using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.
|
Rubio, B. et al, Orrigo, S. E. A., Montaner-Piza, A., Agramunt, J., Algora, A., & Molina, F. (2014). Beta Decay Study of the T-z =-2 Zn-56 Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei. Nucl. Data Sheets, 120, 37–40.
Abstract: This paper concerns the experimental study of the beta decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The beta-delayed gammas, beta-delayed protons and the exotic beta-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the T-z = -2 nucleus Zn-56 has been studied in detail. Information from the beta-delayed protons and beta-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in Co-56, the mirror nucleus of Cu-56.
|
Agramunt, J. et al, Algora, A., Domingo-Pardo, C., Jordan, D., Rubio, B., Tain, J. L., et al. (2014). New Beta-delayed Neutron Measurements in the Light-mass Fission Group. Nucl. Data Sheets, 120, 74–77.
Abstract: A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4 pi neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for Br-91, As-86, As-85, and Ge-85 nuclei.
|
Martinez, T. et al, Agramunt, J., Algora, A., Domingo-Pardo, C., Jordan, M. D., Rubio, B., et al. (2014). MONSTER: a TOF Spectrometer for beta-delayed Neutron Spectroscopy. Nucl. Data Sheets, 120, 78–80.
Abstract: beta-delayed neutron (DN) data, including emission probabilities, P-n, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.
|
Caballero-Folch, R. et al, Domingo-Pardo, C., Tain, J. L., Agramunt, J., Algora, A., & Rubio, B. (2014). beta-decay and beta-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis. Nucl. Data Sheets, 120, 81–83.
Abstract: New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and beta-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Ti, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (Hg208-211, Tl211-215, Pb214-218) were implanted with enough statistics to determine their half-lives. About half of them are expected to be neutron emitters, in such cases it will become possible to obtain the neutron emission probabilities, P-n.
|
Estienne, M., Fallot, M., Cormon, S., Algora, A., Bui, V. M., Cucoanes, A., et al. (2014). Contribution of Recently Measured Nuclear Data to Reactor Antineutrino Energy Spectra Predictions. Nucl. Data Sheets, 120, 149–152.
Abstract: The aim of this work is to study the impact of the inclusion of the recently measured beta decay properties of the Tc-102,Tc-104,Tc-105,Tc-106,Tc-107, Mo-105, and Nb-101 nuclei in the calculation of the antineutrino (anti-nu) energy spectra arising after the fissions of the four main fissile isotopes U-235,U-238, and (PU)-P-239,241 in PWRs. These beta feeding probabilities, measured using the Total Absorption Technique (TAS) at the JYFL facility of Jyvaskyla, have been found to play a major role in the gamma component of the decay heat for Pu-239 in the 4-3000 s range. Following the fission product summation method, the calculation was performed using the MCNP Utility Reactor Evolution code (MURE) coupled to the experimental spectra built from beta decay properties of the fission products taken from evaluated databases. These latest TAS data are found to have a significant effect on the Pu isotope energy spectra and on the spectrum of U-238 showing the importance of their measurement for a better assessment of the reactor anti-nu energy spectrum, as well as importance for fundamental neutrino physics experiments and neutrino applied physics.
|
n_TOF Collaboration(Lederer, C. et al), Giubrone, G., Domingo-Pardo, C., & Tain, J. L. (2014). Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process. Nucl. Data Sheets, 120, 201–204.
Abstract: Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n_TOF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.
|
n_TOF Collaboration(Weiss, C. et al), Domingo-Pardo, C., Giubrone, G., & Tain, J. L. (2014). The (n,alpha) Reaction in the s-process Branching Point Ni-59. Nucl. Data Sheets, 120, 208–210.
Abstract: The (n,alpha) reaction in the radioactive Ni-59 is of relevance in nuclear astrophysics as Ni-59 can be considered as the first branching point in the astrophysical s-process. Its relevance in nuclear technology is especially related to material embrittlement in stainless steel. However, there is a discrepancy between available experimental data and the evaluated nuclear data files for this reaction. At the n_TOF facility at CERN, a dedicated system based on sCVD diamond diodes was set up to measure the Ni-59(n,alpha)Fe-56 cross section. The results of this measurement, with special emphasis on the dominant resonance at 203 eV, are presented here.
|
AGATA Collaboration(Crespi, F. C. L. et al), & Gadea, A. (2014). Isospin Character of Low-Lying Pygmy Dipole States in Pb-208 via Inelastic Scattering of O-17 Ions. Phys. Rev. Lett., 113(1), 012501–5pp.
Abstract: The properties of pygmy dipole states in Pb-208 were investigated using the Pb-208(O-17, O-17'gamma) reaction at 340 MeV and measuring the gamma decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted gamma rays and of the scattered particles were measured. The results are compared with (gamma, gamma') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2(+) and 3(-) states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1(-) excited states from 4 to 8 MeV.
|
Watanabe, H. et al, & Montaner-Piza, A. (2014). Monopole-Driven Shell Evolution below the Doubly Magic Nucleus Sn-132 Explored with the Long-Lived Isomer in Pd-126. Phys. Rev. Lett., 113(4), 042502–6pp.
Abstract: A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in Pd-126 and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, beta decay from the long-lived isomer was observed to populate excited states at high spins in Ag-126. The smaller energy difference between the 10(+) and 7(-) isomers in Pd-126 than in the heavier N = 80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below Sn-132 are discussed in terms of the central and tensor forces.
|