NEXT Collaboration(Gomez-Cadenas, J. J. et al), Alvarez, V., Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., et al. (2014). Present Status and Future Perspectives of the NEXT Experiment. Adv. High. Energy Phys., 2014, 907067–22pp.
Abstract: NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the Xe-136 isotope. It is under construction in the Laboratorio Subterraneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment.
|
Balbinot, R., & Fabbri, A. (2014). Amplifying the Hawking Signal in BECs. Adv. High. Energy Phys., 2014, 713574–8pp.
Abstract: We consider simple models of Bosep-Einstein condensates to study analog pairp-creation effects, namely, the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly timep-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms' interactions shortly before measurements are made.
|
Boucenna, M. S., Morisi, S., & Valle, J. W. F. (2014). The Low-Scale Approach to Neutrino Masses. Adv. High. Energy Phys., 2014, 831598–15pp.
Abstract: In this short review we revisit the broad landscape of low-scale SU(3)(C) circle times SU(2)(L) circle times U(1)(Y) models of neutrino mass generation, with view on their phenomenological potential. This includes signatures associated to direct neutrino mass messenger production at the LHC, as well as messenger-induced lepton flavor violation processes. We also briefly comment on the presence of WIMP cold dark matter candidates.
|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Ferrer, A., Fiorini, L., et al. (2014). Measurement of the total cross section from elastic scattering in pp collisions at root s=7 TeV with the ATLAS detector. Nucl. Phys. B, 889, 486–548.
Abstract: A measurement of the total pp cross section at the LHC at root s = 7 TeV is presented. In a special run with high-beta* beam optics, an integrated luminosity of 80 μb(-1) was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable t. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the vertical bar t vertical bar range from 0.01 GeV2 to 0.1 GeV2 to extrapolate to vertical bar t vertical bar --> 0, the total cross section, sigma(tot)(pp --> X), is measured via the optical theorem to be: sigma(tot)(pp --> X) = 95.35 +/- 0.38 (stat.) +/- 1.25 (exp.) +/- 0.37 (extr.) mb, where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to vertical bar t vertical bar --> 0. In addition, the slope of the elastic cross section at small vertical bar t vertical bar is determined to be B = 19.73 +/- 0.14 (stat.) +/- 0.26 (syst.) GeV-2.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Measurement of CP violation and constraints on the CKM angle gamma in B-+/- -> DK +/- with D -> K-s(0)pi(+)pi(-) decays. Nucl. Phys. B, 888, 169–193.
Abstract: A model-dependent amplitude analysis of B-+/- -> DK +/- with D -> K-s(0)pi(+)pi(-) decays is performed using proton proton collision data, corresponding to an integrated luminosity of 1 fb(-1), recorded by LHCb at a centre-of-mass energy of 7 TeV in 2011. Values of the CP violation observables x +/- and y +/-, which are sensitive to the CKM angle gamma, are measured to be x- = +0.027 +/- 0.0441(-0.008)(+0.010) +/- 0.001, y- = +0.013 +/- 0.0481(-0.007)(+0.009) +/- 0.003, x+ = -0.084 +/- 0.045 +/- 0.009 +/- 0.005, y+ = -0.032 +/- 0.048(-0.009)(+0.010) +/- 0.008, where the first uncertainty is statistical, the second systematic and the third arises from the uncertainty of the D -> K-S(0)pi(+)pi(-) amplitude model. The value of gamma is determined to be (84(-42)(+49))degrees including all sources of uncertainty. Neutral D meson mixing is found to have negligible effect.
|
Carrasco, N., Deuzeman, A., Dimopoulos, P., Frezzotti, R., Gimenez, V., Herdoiza, G., et al. (2014). Up, down, strange and charm quark masses with N-f=2+1+1 twisted mass lattice QCD. Nucl. Phys. B, 887, 19–68.
Abstract: We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with N-f = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210-450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI'-MOM method. The results for the quark masses converted to the (MS) over bar scheme are: m(ud) (2 GeV) = 3.70(17) MeV, m(s)(2 GeV) = 99.6(4.3) MeV and m(c)(m(c)) = 1.348(46) GeV. We obtain also the quark mass ratios m(s)/m(ud) = 26.66(32) and m(c)/m(s) = 11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate m(u)/m(d) = 0.470(56), leading to m(u) = 2.36(24) MeV and m(d) = 5.03(26) MeV.
|
Gonzalez Felipe, R., & Serodio, H. (2014). Abelian realization of phenomenological two-zero neutrino textures. Nucl. Phys. B, 886, 75–92.
Abstract: In an attempt at explaining the observed neutrino mass-squared differences and leptonic mixing, lepton mass matrices with zero textures have been widely studied. In the weak basis where the charged lepton mass matrix is diagonal, various neutrino mass matrices with two zeros have been shown to be consistent with the current experimental data. Using the canonical and Smith normal form methods, we construct the minimal Abelian symmetry realizations of these phenomenological two-zero neutrino textures. The implementation of these symmetries in the context of the seesaw mechanism for Majorana neutrino masses is also discussed.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Evidence for the decay X(3872) -> psi(2S)gamma. Nucl. Phys. B, 886, 665–680.
Abstract: Evidence for the decay mode X(3872) -> psi(2S)gamma in B+ -> X(3872)K+ decays is found with a significance of 4.4 standard deviations. The analysis is based on a data sample of proton proton collisions, corresponding to an integrated luminosity of 3 fb(-1), collected with the LHCb detector, at centre-of-mass energies of 7 and 8 TeV. The ratio of the branching fraction of the X(3872) -> psi(2S)gamma decay to that of the X(3872) -> J/psi gamma decay is measured to be B(X(3872) -> psi(2S)gamma)/B(X(3872) -> J/psi gamma) = 2.46 +/- 0.64 +/- 0.29, where the first uncertainty is statistical and the second is systematic. The measured value does not support a pure D (D) over bar* molecular interpretation of the X(3872) state.
|
de Azcarraga, J. A., & Izquierdo, J. M. (2014). Minimal D=4 supergravity from the superMaxwell algebra. Nucl. Phys. B, 885, 34–45.
Abstract: We show that the first-order D = 4, N = 1 pure supergravity lagrangian four-form can be obtained geometrically as a quadratic expression in the curvatures of the Maxwell superalgebra. This is achieved by noticing that the relative coefficient between the two terms of the lagrangian that makes the action locally supersymmetric also determines trivial field equations for the gauge fields associated with the extra generators of the Maxwell superalgebra. Along the way, a convenient geometric procedure to check the local supersymmetry of a class of lagrangians is developed.
|
Herrero-Garcia, J., Nebot, M., Rius, N., & Santamaria, A. (2014). The Zee-Babu model revisited in the light of new data. Nucl. Phys. B, 885, 542–570.
Abstract: We update previous analyses of the Zee-Babu model in the light of new data, e.g., the mixing angle On, the rare decay μ-> e gamma and the LHC results. We also analyze the possibility of accommodating the deviations in Gamma (H -> gamma gamma) hinted by the LHC experiments, and the stability of the scalar potential. We find that neutrino oscillation data and low energy constraints are still compatible with masses of the extra charged scalars accessible to LHC. Moreover, if any of them is discovered, the model can be falsified by combining the information on the singly and doubly charged scalar decay modes with neutrino data. Conversely, if the neutrino spectrum is found to be inverted and the CP phase delta is quite different from pi, the masses of the charged scalars will be well outside the LHC reach.
|